
 
MACHINE LEARNING PERSPECTIVE FOR ANALYSIS OF GEOSPATIAL DATA 

 
Tanzeela Zarger¹ and Dr. Shobha Lal² 

¹ Ph.D. Scholar Computer Science & Engineering, JVWU, Jaipur 

² Professor of Mathematics & Computing, Department of Science and Technology, JVWU, 

Jaipur 

 
1. ABSTRACT 

The characteristics of spatially explicit data are often inadequately handled in machine learning 

for spatial domains of application. At the same time, resources that can identify these properties 

and explore their impacts and how machine learning applications handle them are lagging 

behind. In this paper, we seek to identify and discuss the spatial properties of data that influence 

the performance of machine learning. We address existing research efforts and challenges in 

three main areas of machine learning: data analysis, deep learning and statistical inference. We 

will also discuss the existing end-to-end systems and highlight unresolved issues and 

challenges for future research in this area. 

Keywords: Machine Learning, Machine Learning Algorithms, Spatial data, Geospatial Data, 

Spatial observation matrix, Classification. 

 
2. Introduction: 

Machine Learning (ML) is being used nowadays in almost every field to provide different 

solutions using structured and unstructured data. Machine Learning has proven its importance 

in different domains of application where spatial aspects are essential including land cover 

classification, cross-sectional characterization, urban growth, disaster management, 

transportation, and accident analysis, map visualization, delineation of geographic regions and 

habitat mapping, POI and region recommendation, trajectory and movement pattern prediction, 

point cloud classification, spatial interaction, spatial interpolation, and spatio-temporal 

prediction [1]. As spatial/Geospatial data has certain unique properties like spatial dependence, 

spatial heterogeneity, and scale, that makes it easy to design an effective Machine Learning 

Technique. This paper covers various Machine Learning methods for spatial data and aims to 

review some of the best recent practices of Machine Learning for spatial/Geospatial data. 

 
3. Literature Review: 

Pradhan [2] discussed the performance comparison of three well-known machine learning 

strategies: the decision tree (DT) approach, the support vector machine (SVM) algorithm, and 

the adaptive neural fuzzy inference system (ANFIS) method. The author reviewed aerial 

photographs and 113 landslide sites collected from field surveys. The study area focused on 

340,608 pixels of which 8,403 pixels contain landslides. The generated dataset is divided into 

a training dataset that accounts for 50% of the data and the remaining 50% is considered a 

validation database. The processed images are sent to GIS technology to visualize the map 

representation of input parameters that are considered to be landslide sensitive data. 
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Reddy et al. [3] with the help of remote sensing and GIS technology, modeled the disturbance 

regimes as well as the biological richness in the area of the Similipal Biosphere Resource (SBR) 

located in the province of Orissa, India. The author calculated perturbation indices by 

considering various parameters causing perturbation such as proximity to the line, interlacing, 

fragmentation, segmentation, adjacency position, and porosity. 

 
Lee et al. [4] using machine learning techniques, focused on removing as well as aggregating 

layers of buildings by classifying large-scale buildings into 0-discard, 1 retain, and 2 aggregate 

respectively. The author used a classification algorithm on the data to classify different 

buildings. Data were obtained by the authors from the National Institute of Geographic 

Information. The main classification algorithms used in this paper include decision trees, naïve, 

nearest neighbors, and support vector machines. 

 
Lary et al. [5] highlight the essence of machine learning by solving problems found in GIS 

technology as well as remote sensing. Non-parametric analysis by regression and classification 

is introduced in the article to show the role of machine learning in improving the functionality 

of GIS and remote sensing applications. The author illustrated several clustering techniques 

and sources distributed over airborne particles and salt buoyancy data as case studies, 

respectively. The use of genetic programming in the field of GIS and remote sensing is 

illustrated through the various results presented in the paper. 

 
Pourghasemi et al. [6] performed experiments using a support vector machine classifiers and 

GIS technology to generate a landslide susceptibility map at the town of Kalaleh located in the 

Golestan province of Iran. The kernel types used to classify and map the landslide susceptibility 

are as follows: 

Linear Kernal Classifier, 

Polynomial Kernal Classifier 2-degree 

Polynomial Kernal Classifier 3-degree 

Polynomial Kernal Classifier 4-degree 

Radial Basis Function Kernel Classifier and Sigmoid Kernal Classifier. 

 
Furlenello et al. [7] discussed the application of machine learning techniques in GIS techniques 

for dynamic analysis. The authors used GRASS tools (Geographic Resource Analysis Support 

System), the R programming language, and Postgre SQL technology to model and analyze the 

geospatial epidemiological data. 

 
Fandino et al. [8] propose ways to analyze crime data using machine learning in the 

background. In addition, emphasis was placed on discovering crime samples using the R 

programming language. The paper adopted data mining strategies and performed a histogram 

analysis on a dataset. 

 
Flaxman et al. [9] proposed a predictive solution for crime events in space-time. The paper 

used advanced techniques such as Kernel Hilbert Space’s RKHS acronym reconstruction to 

approximate Gaussian Processes with auto-recovery smoothening Kernel. Furthermore, the 
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proposed procedure focuses on improving the performance of two widely used areas of crime 

analysis which are the acronym (KDE) Kernel Density Estimation and the acronym for (SEPP) 

Self Exciting Pint Process. 

 
Murayama [10] discussed the basic concepts of deep learning as a subfield of machine learning 

in the context of prediction and simulating urban growth, urban sprawl, and urban 

development. Many socioeconomic factors are selected to determine attributes such as market 

behavior, population, density, transport infrastructure, and government policies regarding land. 

Big data management is a challenge when machine learning is the main technology. Therefore, 

the author has typified the use of deep learning proficiency enough to handle spatial big data 

to perform predictive analysis on multi-dimensional geospatial big data. 

 
Castelluccio et al. [11] examined the features of convolutional neural network (CNN) in the 

context of semantic classification on remote sensing classification. The authors reviewed two 

recent architectures, CafffeNet and GoogLeNet, for semantic classification using three 

different methods. This paper focuses on using pre-trained and fine-tuned networks for training 

rather than conventional training approaches to reduce design time and solve overfitting 

problems. The authors perform experiments on three remote sensing-based datasets to confirm 

their proposed framework. 

 
Scott et al. [12] investigated the use of a deep convolution neural network (DCNN) for land 

cover classification using high-resolution data obtained from remote sensing. Two methods of 

convergence have been proposed namely transfer learning (TL) and new data augmentation 

techniques. The authors report that TL allows the DCNN to be started with well-preserved 

extraction and the data station improves the robustness of the DCNN. The authors considered 

adding the UCMerced dataset to realize their proposed solution in practice. 

 
Bui et al. [13] analyzed the occurrence of malaria based on sociophysical factors in the 

Daknong region of Vietnam using remote sensing, GIS, and machine learning classification. 

The authors performed an accuracy assessment using receiver operating characteristics (ROC) 

and paired tests. This paper focuses on using assembly models and proves that the random 

subspace model is the best fit. The motivation behind the study was to perform vulnerability 

mapping on malaria data so that control measures could be effectively implemented based on 

the map. 

 
Zhang et al. [14] propose a new model based on deep learning that performs predictive mapping 

based on sparse spatiotemporal events. This article used the acronym GLDNet closed local 

broadcast network to represent a graph of networked structured data. In addition, this article 

has attempted to distinguish between two mechanisms for spatial and temporal data, which 

were closed networks means temporal data, and GLDNet means spatial data. 

 
Duan et al. [15] focus on feature extraction from crime datasets using deep neural networks. 

The proposed model, acronym STCN, refers to the SpatioTemporal Crime Network, which 
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utilizes the essence of a CNN with a high-dimensional metaphysical crime dataset. Crime risk 

prediction model based on the provided dataset. 

 
Rao et al. [16] introduced two main multimodel context learning techniques for modeling the 

correlation between visual images captured by an autonomous underwater vehicle and acoustic 

depth measurement data obtained before here by remote sensing. A multi-tier architecture is 

used to find the common distribution between visualization and depth measurement methods. 

 
4. Methodology: 

To conduct Machine learning of geospatial data, we need to add location, distance, or 

topological relations to the process of learning. The process can be categorized into two 

sections, the spatial observation matrix and the Machine learning algorithms. 

 
1.         Spatial Observation Matrix: 

To include spatial characteristics in Machine Learning we have to find a representation for 

these characteristics in the observation Matrix. The principle is that we can use Machine 

Learning methods like SVM, Decision Tree, neural networks, etc. without making changes to 

the algorithms after we design and engineer the observation matrix to include spatial properties. 

Various aspects like spatial sampling, spatial features, dimensionality reduction, and handling 

of missing data are considered while creating a spatial observation matrix that is used as an 

input to the Machine Learning algorithm. These are discussed below. 

 
 Spatial Sampling 

Though there has been a lot of progress in the technology for the collection of spatial data there 

are still challenges faced in getting the optimized samples of data for training a Machine 

Learning model. The data sample set should represent the complete distribution or entire 

population from a statistical point of view. It is not only the scarcity of samples that leads to 

challenges for learning. Though the Learning process will not be affected by the sampling it 

may result in the overestimation of the accuracy of learning. So we should make sure that we 

should be careful in sampling the data that we feed into the algorithm. For a proper review of 

the spatial sampling methods. Inter-class imbalance, in which the number of samples in class 

categories is highly uneven, can also degrade the accuracy of data classification. If we have 

more data samples, the performance of a class will be higher, compared to the classes with 

fewer samples though it overestimates the overall accuracy. 

 
 Spatial Features 

Various methods exist to include the spatial components of data into the observation matrix. 

One way is to add spatial references directly to the data matrix as attributes. Practically there 

are two ways to implement it. One way is to add coordinates for all the observations along with 

semantic attributes to the observation matrix [17,18] and the other option is to add observations 

tied to a region to the observation matrix as fixed effects of that region [19,20]. This way is 

preferable for handling inclusion relationships. Though it cannot capture complex structures, 

it can capture geometric, spectral, textual, statistical, contextual, and relational entities apart 
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from spatial reference information, and that can be created as new features and can be directly 

added to the observation matrix [1]. 

 
 Dimensionality Reduction 

A huge number of input variables may end up in the observation data matrix as the result of 

the Machine Learning task. A large number of interrelated variables may impact learning in 

many ways. More training data may be needed and it will also increase the processing time 

because of the correlation between the variables [21]. There are different methods of feature 

selection. Dimensionality reduction methods are also a good solution to handle various useful 

variables, in particular when the influence of each variable is not of interest. The structure of 

the variance-covariance matrix needs to be understood to minimize unnecessary variables. The 

problem is that the calculation of the variance-covariance matrix Cn×n for a given observation 

matrix Xm×n is computationally expensive for a large set of variables. Many dimensionality 

reduction methods exist, including Principal components analysis, factor analysis, self- 

organizing maps, and independent components analysis. 

 
 Missing Data 

Though the data is easily available the data created by the other processes have gaps in spatial 

and temporal dimensions. So, missing data is a big challenge, and many analyses cannot be 

implemented unless this problem is dealt with. Missing values can be dependent on their 

neighboring points, or specific patterns [22]. There are various approaches to solving this 

problem, such as accumulating data at a coarser granularity, removing instances of missing 

values from the data set and input values. Although data transfer adds a pre-processing step to 

the analysis, it leverages the existing data and avoids loss of information due to aggregation, 

and discards some observations. To impute values for data sets with missing values, spatial 

prediction methods can be used. The well-known methods for spatial prediction are spatial 

statistical models like geographically weighted regression and geostatistical approaches such 

as kriging [23]. 

 
4.2. Learning Algorithm 

Instead of processing the spatial features with traditional methods, we can feed these spatial 

properties into the existing Machine learning algorithm. The various Machine Learning 

techniques that have found attention in spatial science include decision trees, random forests, 

SVM, neural networks, and deep neural networks. Here we will discuss a few of these 

algorithms. 

 Decision Trees 

To overcome the violation of assumption i.i.d, a Decision tree is a popular Machine Learning 

method used for spatial problems. A spatial entropy decision tree classifier uses information 

gained along with spatial autocorrelation to select tests of candidate tree nodes in a raster 

spatial model. Hierarchies of clusters of similar data are identified with the help of PCT, which 

is a multi-task approach, and a predictive model is associated with each group. To maximize 

variance reduction within a cluster a test is run while considering splitting a group at a node. A 

term based on global measures of spatial autocorrelation was added to this test to account for 
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spatial non-stationarity in the target variable. Salt and pepper noise is one of the common 

problems when classifying images using decision trees. This problem occurs when the 

predicted label of a particular pixel is different from the surrounding pixels. Focaltest-based 

spatial decision trees (FTSDT) use local indicators of spatial association-Lisa [24] as spatial 

autocorrelation statistics to measure spatial dependencies between adjacent pixels. 

 
 Support Vector Machines 

The support vector machine algorithm is mainly used for classification and regression problems 

[25]. The purpose of SVM is to map the original input space to a higher dimensionality feature 

space where the observations are separable by hyperplanes. The hyperplane that maximizes the 

margin width (e) is optimized among all possible hyperplanes [26]. Support Vector Machines 

performs good in high-dimensional spaces. It is powerful in generalization and less sensitive 

to class imbalance [26]. Researchers suggested an extension of SVM called support vector 

random field that uses conditional random field (CRF) to explicitly models spatial 

dependencies in the classification. It has two components: the observation-matching potential 

function and the local-consistency potential function. The observation-matching potential 

function models the relationship between the observations and the class labels using an SVM 

classifier, and the local-consistency potential function models the relationship to neighborhood 

labels. 

 
 Self-Organizing Maps 

Self-Organizing Maps (SOM) is one of the nonlinear clustering methods that has been used 

with spatial and non-spatial data [27].This is a simple neural network with no hidden layers. It 

maps an n dimensional feature vector to a regular grid of four or six neighbor neurons in the 

output layer, initialized with n weights. We first use a similarity measure to find more neurons 

that are similar input feature vector and then weights of the activated neurons and their 

neighboring neurons are adjusted to make them even more similar to the input vector. This 

process is repeated for the set of input feature vectors. Finally, this creates a spatial organization 

of neurons with different units far apart in one-, two-, or three-dimensional space. 

 Radial Basis Function Networks 

The two hidden layers in the RBF network are the output layer and an input layer. The input 

vector and the neurons weighted distance are computed in the RBF network using a radially 

symmetric activation function, which is usually Gaussian. Instead of the linear relationship 

between the input vector and the neurons in the hidden layer [28], we compared the RBF 

network with the MLP network for urban change, modeling and found that RBF provides 

higher prediction accuracy. The researchers used the RBF network for spatial interpolation, 

including a semivariogram model in which the hidden layer neurons are the centroids of the 

observations. 

 Adaptive Resonance Theory Networks 

Networks based on Adaptive Resonance Theory (ART) are   a suite of   neural   networks 

used for spatial interaction flows, crop classification, and land-use change applications [29]. 

These networks are supervised, self-organizing, and self-stabilizing neural networks that 
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can quickly learn in deviant environments [30]. The best-known ART-based network is Fuzzy 

ARTMAP, which combines ART-based networks with fuzzy logic [31]. It contains two 

input modules, Arta and Artb, each with two layers connected by a Map Fields module. Arta 

matches   the   input   vector   to   the   most   similar neuron in the second   layer.   If    the 

vector does not resemble the current neuron in memory, a new neuron is created. This 

property allows Arta neural networks to adaptively change network topology and add new 

experiences to memory. Artb, which supports class labels, is linked to Arta through the map 

module. However, Fuzzy ARTMAP can be considered a novel pattern as it depends on the 

quality of the training data and its sensitivity to noise and outliers. 

 Deep Graph Neural Networks 

CNN’s have been used quite extensively for image classification and segmentation. However, 

many problems such as social and biological networks, cannot be represented in grid form, 

making it convolution difficult to apply. Thus, attempts were made by researchers to extend 

neural networks to phenomena that are best portrayed with graph structure. This is how graph 

neural networks (CNNs) were introduced. Recently growing attempts have been made to 

generalize convolution to graphs that can be categorized into spectral and non-spectral 

approaches [32]. Spectral methods create a spectral representation for the graph and apply 

convolution through the graph Fourier Transform [33]. The challenge with these types of 

graphs is, if the structure of the graph changes, a trained model of the old structure cannot be 

directly applied to the graph of the new structure. Non-spectral methods directly use 

convolution on the nearest neighbor in the graph [34]. This approach is relatively new and has 

shown impressive performance in many applications, such as disease spread forecasting [35], 

traffic analysis [36], medical diagnosis and analysis [37], and natural language processing [28]. 

The application of GNNs has yet to be explored in spatial domains especially for non-grid- 

based spatial data such as social networks. 

 
5. Conclusion: 

We examined the literature where machine learning intersects with spatial domains, where 

the data exhibits special properties such as spatial dependence, spatial heterogeneity, and scale. 

We have discussed two main approaches in this part of the document, which are spatial 

observation matrices and learning algorithms. The observation matrix explicitly deals with the 

spatial   properties    of the data    before    the learning process    begins.    In    other    words, 

no modification of the learning algorithm is made after this step. We also discuss that taking 

into    account spatial    properties     in missing    data    processing    and sampling    strategies 

is essential for any spatial application of ML. In addition to these problems, the generation 

of new spatial features as one of the main approaches to augment the observed matrix with new 

spatial     properties      of the data has      been discussed.      To      date, much of the literature 

on machine learning from spatially explicit data has used spatial features mainly because the 

idea came naturally, because of extensive research in geospatial information science. 

Management has focused on these issues for the past two decades, and because of this 

approach allows existing ML algorithms to be used without further modification. Many of 

these methods have been used successfully for a variety of applications ranging from point 

cloud classification to orbital analysis and pattern recognition in satellite imagery. We also 
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discussed how spatial properties can be explicitly handled in another component of ML, 

namely learning algorithms, an approach that has only recently begun to be   explored. 

Here, the spatial   properties   are resolved in the   representation   of the   learning    algorithm 

or the objective function rather than at the level of the observation matrix. 

 
More study is required to learn more about the spatio-temporal domains. Simultaneous learning 

across space, time, scale, and hierarchy is introduced by Deep neural networks that are based 

on a combination of LSTM and CNN. When supplemented with reinforcement learning to add 

feedback in systems, which is the case in many spatial, social and environmental applications, 

they can fulfill the dream of a single universal Machine Learning method [27]. But deep neural 

networks have also various limitations like a huge amount of training data required and also 

they have a huge number of parameters that makes them expensive in terms of the computation. 

Also, the complexity of the DNNs is beyond the limit because of the arbitrary nature of their 

architectural design. In addition to the above suggestions for future research, to analyze 

geospatial data, a long-term research path in this area is needed. 
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