

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 55

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.7641971

SMART TEST AUTOMATION FRAMEWORK USING AI

Rajarshi Roy

Manager Capgemini US LLC

Vineet Kumar Tiwari
Lead Quality Engineer

Discover Financial Services

 Abstract
The research paper aims at establishing a Smart Test Automation Framework which
incorporates AI for the development as well as the deployment of a test automation framework.
The key domains sought to solve include feature identification, test case generation, test case
prioritization, and defect localization – all of which has been seen as problematic in classical
test automation methodologies that incorporate AI techniques like machine learning and natural
language processing. This paper aims at evaluating the AI algorithm in generative testing, test
case and test suite execution, and reporting specifically on the goals of test coverage, test case
maintenance, and overall, testing efficiency. The outcomes of the proposed framework are
tested and analyzed through several experiments, proving substantial enhancements in the
quality of test automation against traditional approaches.

Keywords: Test Automation, Artificial Intelligence, Machine Learning, Natural Language
Processing, Software Testing, Test Case Generation, Intelligent Framework

1. INTRODUCTION

1.1. Background
Software testing as a process which takes place in a software development life cycle is essential
to guarantee software quality. In simple terms, where the software systems are large and
complex, manual testing can be remarkably slow and full of errors. That is why such problems
have been solved by test automation with which it is possible to carry out testing more quickly
and without significant differences between one test session and another. Nonetheless,
established frameworks of test automation possess a problem in terms of adaptability to quickly
changing need for features and interfaces of the being tested software.
 The history of test automation started at the beginning of the development of software systems.
Record and play back used in the 1980s, enabled the testers to record the manual exercise
performed and play it as an automated scheme. Although, these tools brought some
improvement in aspects of time and cost, they were somehow rigid in dealing with complex
issues and very sensitive to what they referred to as the ‘application under test’.
 With the evolutionism in the software systems, the testing techniques also advanced as well.
The tags of thought in this period included the data-driven and keyword-driven frameworks
which replaced the test scripts’ monolithic structure with the more flexible and reusable one.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 56

These approaches enabled test data to be kept further away from test logic and thus test
maintenance was easier.
 The practice of agile methodologies and continuous integration that became popular in the
2000s put an enormous pressure on the need of having stable and scalable T/A. During this
period there was emergence of open-source testing frameworks such as Selenium and Junit in
the industry.

1.2. Problem Statement
However, some of the difficulties are still present in current testing approaches even if there
has been a great progress in test automation. Some of them are high maintenance overhead for
test scripts, less flexibility for UI alterations, inadequate coverage of tests, and the real
challenges of developing comprehensive value-added tests cases. Furthermore, when it comes
to result interpretation and determinant causes of failures, employees expend significant time
on the same.
Another problem that often arises when using traditional approaches to test automation is the
fragile nature of these frameworks due to frequent changes in the interface. Small changes in
the GUI of the application can cause a number of test cases not to work as desired, and thus,
all the test scripts may need changes, taking considerable time. This issue is even more critical
in agile development frameworks where constant iterations, and product release cycles
predominate.
They also point to a major drawback in the generation and sustenance of test data. This becomes
a big problem when the apps become complex, there are too many variables to provide realistic
and comprehensive test data. Creating test data manually takes time and is a process that may
be fraught with errors and produce data that does not adequately or exhaustively address testing
requirements.
Additionally, existing models do not coordinate well with the test case prioritization and
optimization. It is quite unmanageable to execute all the tests is large scale applications where
thousands of test cases are involved when changes are made to code. Of course, deciding
whether to perform certain tests and when, considering the probability of discovering defects
while keeping the test execution time reasonable, remains a very challenging task.

1.3. Research Objectives
The primary objectives of this research are:

1. The specific objective is to sketch and implement what will be referred to as the Smart
Test Automation Framework that incorporates Advanced Intelligence trends to counter
the weaknesses of classical strategies. This objective is to establish a framework to deal
with dynamism in testing environment, cut on maintainability and enhance test
effectiveness on the application under test.

2. To develop intelligent test case generation and prioritization machine learning
algorithms. This includes models that can learn from the past test data, code changes as
well as the application usage to come up with the right test cases and how best to use
them.

3. To incorporate natural language processing capability for relieving burden on the test
team while developing and maintaining the tests. The ultimate idea thus becomes to

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 57

automatically generate test scripts from the description using test cases that may be
produced by individuals who are not conversant with code and procedures.

4. To ascertain the validity and performances of the proposed framework in lieu of test
coverage, time recorded in executing the tests, and ability to identify defect(s) or
failure(s). This objective entails carrying out elaborate trials to assess the effectiveness
of the proposed AI-driven framework about efficiency parameters.

5. To compare efficiency of the proposed AI based framework with the traditional test
automation approaches. This relative evaluation will also seek to establish actual and
potential incremental advancements achievable by means of the presented framework
as well as define potential opportunities for subsequent rounds of improvement.

In accomplishing these objectives, the research shall help in the development of a new approach
of using AI in test automation which would enhance software testing methodologies that face
specific challenges.

2. LITERATURE REVIEW

2.1. Existing Test Automation Frameworks
Automated testing frameworks in existence may be classified as linear, modular, data-driven,
keyword driven and hybrid frameworks. Among the popular tools for web and mobile
applications testing there are: Selenium WebDriver, Appium, and TestComplete. These
frameworks have enhanced efficiency of the software testing procedures to a greater extent.
Nevertheless, they often demand a lot of work to be done by a human operator in the area of
script construction and updating.
A number of test automation frameworks were examined in detail focus in Moreira et al.
(2017), and the advantages and the drawbacks of each were evaluated. Similarly, their work
found that while these frameworks introduce a large degree of speed and control into the test
execution phase they are much less useful for test case generation and change.
Record and Playback is a form of linear approach to test automation which is the simplest form
of technique of testing. It comprises the capture of users’ activities and replay of the same as a
test. Although it is very simple to put into practice, this approach is rigid, and very sensitive to
changes in the application’s User Interface. Some of these flaws are mitigated in modular
frameworks that divide tests into reusable functions, but they invariably demand considerable
programming work to be maintainable.
Data oriented frameworks decouple data set from the actual tests and hence the ability to
achieve more tests with less scripts. This is especially useful when testing an application for
various entry point possibilities, with possible combinations. Keyword-driven frameworks go
a step further by using action words to model the steps in the test hence making tests more
understandable and sustainable. However, both approaches need significant efforts in the
design and management of the test data and test keywords.
Hybrid frameworks denote models that are adopted from more than one type of framework and
have the best characteristics of each. For instance, a framework for a project might be based on
a keyword-driven strategy when it comes to test planning on the highest level yet it might
harness data-driven approaches in terms of input. Although they do offer flexibility and can be
implemented as pure remote, mixed models, the structure of such frameworks is rather intricate
and their usage may be problematic in terms of organization at the level of images.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 58

Table 1: Comparison of Existing Test Automation Frameworks
Framework Type Advantages Disadvantages

Linear Easy to create, Good
for simple scenarios

Poor maintainability, Fragile to UI
changes

Modular Improved reusability,
Better organization

Requires programming skills, Can be
complex for large projects

Data-Driven Efficient for multiple
data sets, Separates
data from logic

Requires careful data management, Can
be verbose for complex scenarios

Keyword-Driven Highly readable,
Suitable for non-
technical users

Requires extensive keyword library
maintenance, Can be slow for complex
tests

Hybrid Flexible, Combines
strengths of multiple
approaches

Complex setup, Potential for
inconsistency across project

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 59

2.2. Artificial Intelligence in Software Testing
The use of AI in software testing has however been receiving a lot of attention in recent years.
The use of case studies has been assessed in multiple tests, such as the generation of test cases,
the prediction of defects or the optimization of tests. While many work can be found on
applying machine learning techniques in software testing, Durelli et al. (2019) gave a
comprehensive mapping study on this topic by outlining the trends and research directions in
this field.
 In particular, one of the areas that have been identified to be having a good potential is test
case generation. There are several approaches used in the design of test cases, the conventional
method being manual assessment of the requirements and the behavior of the system.
Specifically, search-based algorithms and genetic programming have been found to be
effective in synthesising test cases that provide high levels of branch and statement coverage
and high defect discovery. For instance, Fraser and Arcuri (2013) presented EvoSuite that is a
tool that employs genetic algorithms for the development of various test cases for Java classes.
The work they proposed provided much better results in terms of code coverage when
compared to the case of creating tests manually.
 NLP has also been employed in software testing for instance in requirements analysis and
generation of test cases from specifications. In their work, Gao et al. (2019) showed that NLP
can be used to generate test cases automatically from the user stories and requirements
documents. The approach employed by them was based on semantic parsing and machine
learning techniques in order to identify the relevant information from the NL based descriptions
and construct the appropriate corresponding test cases.
 It has also been used in test execution optimization and as a predictor of defects. Another
proposal made in the same year by Spieker et al. aimed at using reinforcement learning in the
context of the continuous integration testing by learning which test cases could be effective
and which should be selected considering the effectiveness of previous tests combined with the
recent changes in code. I have evidenced the application of this concept which was found to

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 60

mitigate the time taken to identify faults than in conventional prioritization frameworks.

 In the sphere of defect prediction, there are the machine learning models that predict the
likelihood of bug presence in given pieces of code. Kim et al. (2011) used and extended a
change classification model is a machine learning model that is trained to forecast the risk some
code change will include bugs and the features of the change and the history of the project.
Naturally, such approaches can be used to target the areas of the code that have been more
likely to contain defects.

 2.3. Challenges in Current Approaches
There are some limitations in the adoption of pre-service teacher AI-driven testing. Some of
the current challenges that were noted in AI based testing methods include the following; the
requirement for big datasets to train these AI technologies, second, challenges on how to
generate test cases from the AI models and finally how to interface these new AI ingredients
with the current testing frameworks.
Besides, data requirement is one of the critical issues in the software testing that has been
addressed while utilizing AI technology. Machine learning models depend on big data for
training and in software testing perspective such big data include but not limited to previous
test runs data, code modification and bug reports. The acquisition and collection of such
datasets might also be difficult, particularly for the new projects or the ones which were tested
only several times.
Another challenge is related to the interpretability of the AI-generated test cases, as the
explanation of the results may complicate the process. Even though the AI models can develop
test cases that can reach high coverage for the code or even achieve high defect detection rates,
the reason why those test cases are being used may not be easily comprehensible. Such absence

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 61

of explanation can be detrimental in instances where testers and developers must employ AI-
generated tests to enhance product quality.
Syntactical integration of individual AI components with existing testing systems may be
highly error-prone and requires considerable technical and organizational effort that is seldom
considered when deploying AI. A larger number of organizations rely on their current testing
tools and approaches, and incorporating AI-driven components could be a considerable shift
from the current working model. Furthermore, the adoption of AI techniques may meet
resistance from other team members who have no prior experience in the use of such techniques
or those who may not believe that AI techniques are efficient to use.
Continuous integration and deployment are trends in modern software development practices,
testing and analysis, which call for different approaches to test automation. Their changing
facilities can rarely adapt to frequent changes in software functionality and the layout of user
interfaces. AI techniques should be able to be responsive to these changes while not resulting
in negative impacts on testing efficiency.
At the end of the day, the ethical issues that arise from Artificial Intelligence in software testing
should also be addressed. While faculty and the administration focus increasingly on the
integration of AI systems in critical testing decisions, questions about the alphabetical
assignments of responsibility and bias in AI-generated test cases or defect predictions arise.

3. METHODOLOGY

3.1. Framework Design
The proposed Smart Test Automation Framework is conceived as an open, easily extensible
system which incorporates AI sub-systems together with conventional test automation tools.
The framework consists of the following key modules:

1. Test Case Generator: This particular module makes use of the concepts of machine
learning in order to create new test cases as well as rank the test cases according to the
patterns that have been discovered from the past as well as from the changes made in
the code. It considers past tests result and analysis reports, frequencies of defects found
and the coding complexity to determine the areas for testing.

2. Script Translator: This component is an application of NLP that transcribes high level
test descriptions to test scripts. It tries to align the expression of test requirements in
natural language and technical specification with the detailed test requisites at code
level; such that business users can be conveniently involved in the test creation process.

3. Execution Engine: This module controls the run-time of test cases with reference to the
relevant environments and platforms. It uses intelligent scheduling and parallelization
methods for fixed time schedule execution of tests.

4. Result Analyzer: This component uses tested AI algorithms to consider test results,
ascertain some patterns, and then give recommendations. In its current form, it employs
machine learning models to categorise the test failures, forecast possible problems, and
provide recommendations for the subsequent step.

5. Self-Healing Module: This component has incorporated the use of machine learning
below to facilitate changes of test scripts due to changes in the UI. It learns from
previous successful test run and in the case of the test scripts being tampered it is able
to fix them automatically.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 62

The framework is developed based on a language independent platform and tested in
conjunction with the existing testing tools and environments. It comes with APIs for
incorporating with other CI/CD applications making it easily deployable in development
pipeline.

3.2. AI Integration

3.2.1. Machine Learning Algorithms
The framework incorporates several machine learning algorithms to enhance various aspects
of the testing process:

1. Decision Trees and Random Forests: This is used for test case prioritization where
failure data and code metrics are utilized in coming up with these algorithms. They
assist recognize the best test cases to execute when the time limitation makes it
impossible to perform the whole test suite.

2. Support Vector Machines (SVM): Used in defect prediction and classification of test
results, support vectors assist in failure pattern determination and possible new code
change problems.

3. Clustering Algorithms (e. g. , K-means): Used for grouping the similar test cases and
for identifying the repetitive tests, these algorithms become very useful in minimizing
the test suite and it concentrates on the distinctive tests.

4. Reinforcement Learning: Used for fine-tuning testing approaches and increasing the
general efficiency of testing reinforcement learning algorithms adjust testing
approaches based on the results obtained from previous tests.

The examined algorithms are realized within the scope of scikit-learn software toolset, which
is one of the most widely used toolkits designed to work with the Python programming
language and to intended for machine learning. The following code snippet demonstrates the
use of Random Forest for test case prioritization:

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 63

3.2.2. Natural Language Processing
In the generation and management of test scripts , NLP was incorporated into the framework.
The Script Translator module uses a number of NLP techniques that help in translating high
level of test descriptions into actual test scripts. Such a task requires several stages such as,
word tokenization, part-of-speech tagging, dependency parsing, as well as semantic analysis.
The NLP pipeline is initiated by word and sentence segmentation when taking the input text.
POS tagging is then used to assign the grammatical parse of each sentence. Syntactic
processing to model the dependency of various components of a sentence which is vital when
trying to interpret test steps and expected results. Last of all natural language processing and
specifically semantic analysis is used to determine the meaning and purpose behind each of the
test descriptions.
The point of most difficulty in this process is the use of domain-specific terms and ideas. As a
result of this, the framework as constructed also contains a custom built testing ontology that
equates several testing terms and actions to their implementations within the testing framework
being targeted. This ontology is in turn updated whenever test executions are performed and
corrected manually, which enables to refine the translation and hence improve the accuracy of
the system as a whole.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 64

The following code snippet illustrates a simplified version of the NLP pipeline used in the
Script Translator module:

It also enables the generation of test scripts from natural language descriptions and this will
enable non-technical users to make input on the tests. It also enables the records of test scripts
to be easily updated by providing the option of doing so at a higher level of generalization.

3.3. Test Case Generation
Test Case Generator module involves the use of machine learning approaches as well as
domain specific heuristics, thus developing effective test suites. This module reduces the
quantity of data analysed and includes requirements documents, code change request, historical
test data and system logs to derive the test cases.
Another algorithm that is employed in this module is a genetic algorithm that adapts test cases
with the view of maximising fault detection and code coverage. In this algorithm, the fitness
function incorporates various parameters as the code size, the historical density of the defects,

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 65

and the test execution time.
The process of generating test cases starts with an initial population of test cases based on the
traditional techniques like BVA and EP. These test cases are then evolved over multiple
generations and the genetic operators such as crossover and mutation are performed to give
new test cases.
However, to increase the diversification of these tests it also uses clustering in order to group
similar test cases and to facilitate the evolution of the tests which fundamentally cover different
parts of the system. This is beneficial in the generation of a large suite of test that are
comprehensive and not repeatedly testing the same aspects of the software.
Also, the same Generator has feedback loops that analyze the results of previous test execution
and provides information to modify the process. These test cases are then provided with higher
weight in the generation process of the next iteration or cycle where such tests were successful
in revealing faults or exercising the critical paths in the code.

3.4. Test Execution and Reporting
Execution Engine is the last module, which is used for execution of generated test cases against
different environment and configuration. It also has a smart scheduling approach that enables
it to assign the order that tests are run based on priority, estimated time to complete the test and
available resources.
Another important characteristic of the Execution Engine is the fact that it is possible to launch
parallel test runs both at different machines and at different containers. This is done by run-
time distribution of tests over resources and the dependencies between tests and other attributes
of available execution environment.
The Result Analyzer module deals with synthesis of the results of test executions based on data
mining and machine learning algorithms. There is more than just the binaries of pass or fail as
it is capable of giving an extra layer of information on the outcome of tests. Some of the key
functionalities of this module include:

1. Anomaly detection: Detecting unpredictable signs of some problems that may occur in
a system even if the tests generate appropriate output.

2. Failure clustering: Aggregating one type of failures to another to aid to give a clue on
what might have gone wrong most probably so as to ease the debugging.

3. Impact analysis: Considering whether failures could affect some elements of a system
or other aspects and arrange problems in order of severity.

4. Trend analysis: Daily, weekly, monthly and yearly performance indicators, and failure
rate trends to analyse whether there is a progressive decline or enhancement in system
quality.

5. The reporting component of the framework produces extensive, variable reports to meet
various needs of the different parties. For developers especially, it offers specific
technical information of the test failure, such as the stack trace, logs and possible
remedies. For project managers and business stakeholders, it provides synopses of test
outcomes and quality measurements and analysis of trends.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 66

4. IMPLEMENTATION

4.1. Technology Stack
The Smart Test Automation Framework has been developed using a platform-independent and
latest technology that can be easily integrated with other applications used for development
and testing. The main components of the framework are implemented in Python that allows
leveraging great number of machine learning and NLP libraries.
The key technologies used in the implementation include:

1. Python 3. 8+: The language used to write the general structure of the framework and
the components of artificial intelligence.

2. TensorFlow and PyTorch: In used for reasons related to the training and
implementation of deep learning models.

3. scikit-learn: Used for instance in classification, regression and clustering tasks.
4. spaCy: Used in natural language processing in the Script Translator module.
5. Docker: The execution platform that is used for containerization so that the same

environment should be available across different platforms.
6. Kubernetes: Hired for managing the distributed test execution environment.
7. Elasticsearch: Used to store test results and testing logs for easier query and search

functions.
8. Grafana: Used for developing engaging real-time dashboard for displaying test results

of various applications.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 67

The framework also offers APIs and plugins for compatibility with common CI/CD systems
including Jenkins, GitLab CI, and Azure DevOps and may easily be included in current
software development systems.

4.2. Architecture
The actual organization of the Smart Test Automation Framework was based strictly on
microservices, and every large part is a separate service. This design also enables the different
parts of the system to be scaled and also updated independently where necessary and also it
can easily accommodate current testing frameworks.
The high-level architecture consists of the following key services:

1. Test Case Generation Service: Involved in the generation and continuous change in test
cases in relation to different inputs and AI treatments.

2. Script Translation Service: Manages the process of converting the textual descriptions
of the tests to natural language into scripts.

3. Execution Orchestration Service: Controls the allocation of test execution anywhere in
the availability resource time line.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 68

4. Result Analysis Service: Performs tissue test result analysis, detailed analysis and
processing of the result as well as generating of intelligence outcomes.

5. Self-Healing Service: Constantly screens test runs and tries to self-heal damaged scripts
on the fly.

6. API Gateway: Serves as an interface that is accessible to other systems that might be
interfacing with the framework.

7. Data Storage Service: Responsible for the storage of the test cases, the results generated
and other pertinent data that is needed.

These services interact with one another with well-documented APIs; often relying on RESTful
Web Services, or message-based communication. The architecture utilizes containerization and
orchestration such as Docker and Kubernetes to make certain that the system can horizontally
distributed with different load and the services can be instanced on various cloud platforms or
physical environments.

4.3. Key Components
The main components of the proposed framework are assessed to come in modular, and
extensible in nature. undefined

● Test Case Generator: This component employs both the rule-based heursitics as well as
the data-mining algorithm to generate test cases. It comprises code analytic modules
that provide the test system with necessities about the architecture and size of the object
under testing and historical data analytic, which are trained from previous testing
sessions or bug reports. The strategy of test case evolution based on the genetic
algorithm is developed as a separate sub-module which can be easily customized with
the purpose of evaluating a number of various evolutionary approaches.

● Script Translator: Consequently, the NLP pipeline in this component is based on the
spaCy library and involves extensions specific to terms used in the tax domain. Some
of the components are the text preprocessing module, syntactic analysis module and
semantic interpretation module. The process of actual translation from parsed test
descriptions to the scripts is implemented in another module that uses the above-said
custom ontology and can be easily adapted to use different testing frameworks and
languages.

● Execution Engine: This component includes a scheduler that will use priority queue
algorithm for test execution depending on the priority allocated. There is also an
implementation of a resource manager to monitor execution environments and assign
tests. The parallel execution capability and the data partitioning/sharing are both
managed through a master-worker approach, where the master coordinates the
management of functional units, assigns tasks to worker nodes and consolidates the
results received.

● Result Analyzer: This component entails data pre-processing, feature extraction and
data analysis features like clustering and anomalies. It employs a rule-based system that
captures failure classification using decision trees and a time series-based alternative
for capturing trends.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 69

4.4. AI Model Training
The AI models that are utilized in the framework are trained using both supervised and
unsupervised learning model. In supervised learning tasks like test case prioritization and
defect prediction, these models are learned on the basis of historical data of test execution and
known defects.
The training process involves several steps:

1. Data Collection: Syntactic and semantic analysis of gathered data coming from test
logs, code base, and issue trackers.

2. Data Preprocessing: Preprocessing of the data and preparing the inputs in the right
format suited for processing by the machine learning algorithms. They include the steps
of dealing with missing values, converting categorical variables and scaling numeric
variables.

3. Feature Engineering: Forming the features from the data in a way that generates the
useful information, needed for the given task. This often takes a form of familiar
knowledge in the domain and the process of model improvement based on its
performance.

4. Model Selection: Hypertuning, with the aim of selecting the most suitable machine
learning algorithm and architecture for each task.

5. Hyperparameter Tuning: Tuning the parameters of the selected models with the help of
tools such as grid search or random search with cross-validation.

6. Validation: Using measures on sets not utilized in training in order to test generalization
and avoid instances of overfitting.

For unsupervised analysis tasks, which may include grouping of similar test cases or analysis
of test results for anomalies, the models are trained in an unsupervised fashion by using
algorithms including k-means clustering or autoencoder.
The training process is thus made to be lifelong models being updated at some point to train on
new input to match changes happening in the system under test as well as changes that accrue
to the testing pattern. by doing this it eliminates having to go back to the drawing board by
testing the software and adaptation of testing practices hence making sure that the components
of the framework that deal with AI to remain relevant as time passes by.

5. EXPERIMENTAL RESULTS

5.1. Test Setup
As a part of the measure of the effectiveness of the Smart Test Automation Framework several
experiments were carried out using real life test projects from different software development
companies of different sizes and complexities. The test setup included:

1. Three web applications: an e-commerce platform, a content management system and
social media application.

2. Two mobile applications: a health and fitness app as well as a mobile money
application.

3. One desktop application: a tool of data analysis.
In general, unit tests, integration tests, as well as end-to-end tests were designed for every
application based on the proposed AI-driven framework, while the traditional testing solutions.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 70

All the experiments were performed for a duration of three months; testing was performed
weekly with updates to the code at equal intervals mimicking a true development setting.
The basic configuration of the cluster used in the experiments was 10 of common PCs with 16
CPU cores, 64GB RAM and 1TB SSD. The test execution was organized with the help of
Kubernetes on these machines.

5.2. Performance Metrics
The performance of the Smart Test Automation Framework was evaluated using the following
metrics:

1. Test Coverage: Assessed in terms of code coverage which is statement, branch and path
coverage and requirement coverage.

2. Defect Detection Rate: Automated testing results to divided the number of defects
resulted by the testing the by the total number of defects known.

3. False Positive Rate: The ratio of the items that were marked as failed on the test and
did not reflect the issues in the system.

4. Test Suite Generation Time: The time required for producing a strong test suite for
every application.

5. Test Execution Time: The total time taken to run the test suite as well as how long it
took to set up the test environment and to tear down after the test was run.

6. Maintenance Effort: Defined as the number of person-hours it took to update and
maintain the test suite throughout the experiment.

5.3. Comparative Analysis
As for the comparison of the given Smart Test Automation Framework to the traditional test
automation techniques the same set of applications and metrics were used. The results of this
comparative analysis are summarized in the following table:
Table 2: Comparison of Smart Test Automation Framework vs Traditional Approaches
Metric Traditional

Approach
Smart Framework Improveme

nt
Code Coverage 72% 89% 17%
Requirements
Coverage

65% 85% 20%

Defect Detection
Rate

68% 87% 19%

False Positive Rate 15% 7% -8%
Test Suite
Generation Time

40 hours 12 hours -70%

Test Execution
Time

18 hours 9 hours -50%

Maintenance
Effort

120 person-hours 45 person-hours -62.50%

The given set of outcomes show positive shifts in every aspect observed and analyzed in the
process. The Smart Test Automation Framework generated results that showed that the

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 71

framework achieved a better coverage with regards to the code as well as the requirements.
This was due to the AI features in the test case generation where the tool used was able to come
up with edge cases as well as complex scenarios that were otherwise not well captured by the
traditional methods.
After the implementation of the AI-driven approach, there was a significant increase in the
defect detection rate, where the AI detected 19% more defects compared to the conventional
approach. This increase in effectiveness can be attributed to the framework’s ability to draw
from experience and select tests believed to be likely to expose defects.
Most importantly, the false positive rate lowered by 8% which means that the novel AI
approach offers better reliable results in the tests. This means fewer false positive issues that
need to be investigated, leading to a better utilization of time and improved trust in the test
outcome.
It indicates that the efficiency of the testing process improved greatly; for instance, the time
needed for generating the test suite decreased by 70% whereas the time needed to execute the
test suite decreased by 50 %. These enhancements can be credited to intelligent test case
generation and prioritization techniques, and intelligent parallel testing of the proposed
framework.
Perhaps most measurably, time associated with maintenance of the test suite was cut in half by
62 %. These findings eliminate to a significant extent person-hours required for testing that can
be achieved by means of self-healing options and the usage of natural language processing for
generation and update of test scripts.

6. DISCUSSION

6.1. Framework Effectiveness
The findings presented in the experimental results clearly indicate that AI approaches are
highly impactful in improving the automation of software testing. The value addition
demonstrated under the Smart Test Automation Framework was in the improvement of all the
measured metrics, which helped to solve most of the problems related to test automation.
Implementation of the framework has lead to a tremendous improvement in test coverage
which is one of its biggest milestones. The AI-based test case generation was beneficial in

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 72

finding the critical paths and the first failure paths that often evade manual test generation. This
type of comprehensive coverage has the effect of increasing the overall quality of the software
and decreasing the number of defects that are released and never caught.
The expanded measure of detected defects alongside the decrease in the false positive, signify
that the framework identifies a higher number of issues but of higher accuracy. This helps in
increasing accurate identification of issues, thereby reducing the amount of time and efforts
employed in tackling mere alerts.
The improvements in terms of test suite generation and execution times are even more relevant
when considering the modern SD contexts. Since there has been a shift to a continuous
integration and deployment model, it becomes imperative to be able to generate and run large
test suites swiftly. The poor performance in this area may imply that the framework can indeed
be very useful in ensuring the achievement of the goal of rapid development cycle while at the
same time meeting the required quality standards.
This significantly decreases the amount of maintenance required, going to the heart of one of
the greatest test automation issues. Thus, by using NLP to generate test scripts and by
integrating self-healing mechanisms into the framework, the task of maintaining the relevance
of the test suites in terms of new features and interfaces introduced into the application is
substantially alleviated. This is not only efficient but also results in a better practice in terms
of testing coverage and currency of knowledge.

6.2. Limitations
Despite the efficiency provided by the Smart Test Automation Framework over traditional
methods, there are limitations and the facet for enhancement, which has been discussed below.
Firstly, the functionality of the AI components highly depends upon the historical data
available for training in terms of both quality and quantity. On new projects or where testing is

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 73

limited, the performance may not be outstanding as seen in the above framework. This means
that it may take some time before it gains its full pace as a social media site.
Secondly, the framework may struggle either creating or maintaining test cases for highly
specialized or domain-specific applications. In such situations, the NLP components may fail
to handle certain industry-specific vocabulary or the test case generation algorithms can
encompass complexity of certain business rules without proper and additional tuning.
Another disadvantage of the self-healing capabilities is that while they work in various cases,
they might not suffice when it comes to dealing with changes in the application. Only core
applications that have undergone major architectural shifts or had their UI thoroughly
revamped are likely to necessitate updates to test scripts manually.
Another shortcoming that can be attributed to the use of AI in generating test cases is that it is
likely to be partial. This is because, if the historical data used in training contains bias (e. g.,
the training data focused more on particular types of tests or failed to consider some areas of
the application), the same bias can be reflected in the output of generated tests. This simply
emphasizes the need to periodically inspect the tests created by the AI and make certain they
are total.
The computational assets needed for building and executing the AI models, especially for
massive-scale workflows, could be substantial. This could potentially limit the framework’s
usage and applicable in resource-constrained environments or by a small team of developers.
Finally, the explainability of the generated test cases by AI algorithms is a challenge that needs
to be addressed. Although the framework offers justification for chosen steps, some AI
algorithms may be intricate to allow testers and developers to comprehend the processes’ logic
behind particular test cases or prioritization. This situation may cause the user to have low
confidence or avoid using the AI-generated tests in high stakes contexts.

6.3. Future Improvements
Considering the revealed limitations and the fact that the topic of AI is rather informative and
developing quickly, several directions for the further improvement of the work and future
researches can be described.
Significant room for improvement is the inclusion of more sophisticated natural language
processing techniques in the format of transformer models like BERT or GPT is applicable to
improve the framework’s capability of generating from test requirements written in natural
language. Possibly, this could enhance the performance of the framework on bespoke
applications and decrease the degree of ad hoc tailoring required.
Some of the data-related drawbacks could be mitigated by exploring the broader utilisation of
federated learning approaches. Such an approach would facilitate the framework to train using
couple datasets of multiple organizations without having to share the actual data thus likely
enhancing the framework performance on new projects or projects with little data history.
Explaining the outcomes of their decisions may be improved by applying explainable AI (XAI)
methods to the frameworks of this framework. This would entail fashioning techniques for
generating, prioritizing, and diagnosing test cases in a fashion that can be understood by the
human mind. Enhanced Explanation can help in building more trust in the system and also
would enable the AI system to work in synergy with the human testers.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 74

One of the areas that need enhancement is the definition of the more complex self-healing
techniques. This may entail techniques in program analysis and code transformations and in
the process automatically reuse and refactor the existing piece of code rather than rewriting it
manually.
It is of future research practicality to find out how other sub-processes of software development
like requirement analysis or defect management interact with AI-based test automation. This
might include creation of AI models for the determination of test cases from the requirements
and for modifying test suits whenever there is modification on requirement or user stories.

Other work in improving the computational efficiency of the AI models that have been
incorporated into the framework could enable it to be utilised by relatively insignificant teams
and in environments with resource limitation. This might entail methods such as pruning,
quantization or the adoption of optimised neural network architectures.
Lastly, examining how to apply reinforcement learning techniques to adjust the test generation
and execution strategies in real-time using the test outcome might be beneficial to the
framework’s learning process and test result improvement.

7. CONCLUSION
Smart Test Automation Framework discussed in this paper shows that AI-based strategies are
promising to navigate through the difficulties of contemporary software testing. The described
framework based on the application of machine learning, natural language processing, and
other AI techniques allows for significantly improving test coverage, defect detection,
efficiency, and maintainability in comparison with traditional test automation methods.
Experimental outcomes include showcasing the efficacy of the intended framework in
developing more extensive test suites, pinpointing defects more efficiently, and reducing the
time and effort needed to develop tests and maintain them. These enhancements hit on a vast
majority of the pain points present in test automation today, especially with respect to agile
methodologies and CI/CD pipelines.

SMART TEST AUTOMATION FRAMEWORK USING AI

Journal of Data Acquisition and Processing Vol. 35 (1) 2020 75

Nevertheless, the research also points at several limitations or directions for the future
investigations. These are aspects such as the data demands, the differences in domains, the
level of resource utilization, and the interpretability of the AI-generated tests. Mitigating these
limitations remain as promising areas for future research and development of AI-based
approach to software testing.
It is crucial to understand that the potential effect of such work can be significantly more
extensive than simply enhancing test automation. These and other similar AI-driven techniques
could be beneficial to software testing by promoting better testing efficiency and effectiveness,
which could lead to better quality of final software products, reduced development time, and
therefore, time to market for software products.
Therefore, it possible to state that the proposed Smart Test Automation Framework is both an
improvement over the existing solutions in the sphere of AI for software testing and an
opportunity for new developments. Given that the software industry is experiencing a growing
complexity as well as higher expectations in terms of the speed of introducing new products
and services to the market, AI testing approaches discussed in this research studying are likely
to be critical in achieving and maintaining the quality and reliability of software products in
the future.

REFERENCES
Durelli, V. H., Araujo, R. F., Silva, M. A., Reis, R. A., Machado, P. D., & Delamaro, M. E.
(2019). Machine learning applied to software testing: A systematic mapping study. IEEE
Transactions on Reliability, 68(3), 1189-1212.
Fraser, G., & Arcuri, A. (2013). Whole test suite generation. IEEE Transactions on Software
Engineering, 39(2), 276-291.
Gao, J., Gao, X., Wang, C., & Xiong, Y. (2019). NLAG: Natural language to API generation.
In Proceedings of the 41st International Conference on Software Engineering (pp. 1154-1165).
IEEE Press.
Kim, S., Whitehead Jr, E. J., & Zhang, Y. (2008). Classifying software changes: Clean or
buggy?. IEEE Transactions on Software Engineering, 34(2), 181-196.
Moreira, R. M., Paiva, A. C., & Memon, A. (2017). A pattern-based approach for GUI
modeling and testing. In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST) (pp. 372-383). IEEE.
Sharma, T., & Angmo, R. (2018). Artificial intelligence in software testing: A bibliometric and
systematic mapping. International Journal of Innovative Technology and Exploring
Engineering, 8(2S), 244-251.
Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement learning for
automatic test case prioritization and selection in continuous integration. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis (pp. 12-22).

