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Abstract  
In Wireless Sensor Networks (WSNs), efficient routing is essential for maintaining 

network reliability and optimizing energy consumption. This paper introduces Enhanced 
Genetic Algorithm with Data Aggregation scheme (EGA-DAS) method a novel route 
discovery approach combining Electro-Magnetism with Enhanced Genetic Algorithm 
(EMEGA) to enhance routing efficiency. EMEGAutilizes electromagnetic principles for node 
attraction and disgust, simulating the optimization process similar to genetic algorithms. By 
iteratively refining routes based on energy consumption and network conditions, EMEGA aims 
to discover paths that minimize transmission costs and ensure robust communication. 
Performance evaluations demonstrate EMEGA's capability to achieve superior routing 
efficiency compared to traditional methods, offering promising advancements for reliable and 
energy-efficient WSN deployments. Extensive simulations and performance evaluations 
demonstrate that the proposed data aggregation scheme significantly outperforms existing 
methods in terms of energy efficiency, delivery delay, and data accuracy. This study 
contributes to the advancement of WSN technologies by offering a robust solution to the 
challenges of data flooding and delivery delay, making the way for more efficient and 
sustainable network operations. 
Keywords:EGA-DAS, Data Aggregation,Adaptive Threshold-Based Filtering, Genetic 
Algorithm, Wireless Sensor Networks 
I. Introduction 
 Many sensor nodes spread out over a network keep tabs on the surrounding 
environment and relay that information to a single "sink" node for analysis in a WSN [1]. 
Among the many uses for these networks are healthcare, industrial automation, environmental 
monitoring, and military surveillance [2]. Efficient data transmission, managing energy 
consumption, and guaranteeing reliable communication despite sensor node resource limits are 
the key problems in WSNs [3]. In addition to making sensor operating easier, modern WSNs 
operate in a bidirectional fashion [4]. When compared to a conventional cable network in 
uncertain circumstances, a WSN is more trustworthy since its sensor nodes can communicate 
and process data [5]. To minimize energy consumption and maximize the network lifetime in 
WSNs, effective data aggregation plays a crucial role in reducing redundant data transmission 
[6]. huge amounts of data are often generated by the many sensor nodes that make up WSNs, 
which are spread out across a huge region to keep an eye on the environment [7]. Data flooding, 
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higher energy usage, and, eventually, network congestion and failure, can result from 
ineffective data aggregation [8]. In dynamic settings, where network circumstances and data 
relevance might change quickly, traditional data aggregation strategies, while beneficial, 
frequently fail [9]. By using adaptive threshold-based data filtering techniques, this work 
presents a new data aggregation approach that aims to tackle these issues [10]. This adjusts the 
aggregation process in real-time depending on the significance of the data and the state of the 
network, ensuring that only meaningful and non-redundant data is sent to the sink node [11]. 
 Network circumstances and application needs can change fast in dynamic settings, 
which WSNs commonly operate in [12]. Therefore, adaptive data aggregation methods that 
can react to these changes in real-time and guarantee optimum performance in different 
environments are critically needed [13–14]. Timely data transmission is critical for decision-
making and responsiveness in time-sensitive applications, making delivery delay another 
significant measure [15-16]. In this study, we provide a data aggregation strategy that can 
improve delivery latency in WSNs and prevent data flooding [17]. For the purpose of avoiding 
the transmission of unnecessary or irrelevant data, our method integrates a new data 
aggregation technique with adaptive threshold-based data filtering mechanisms [18–19]. Our 
technique successfully reduces the likelihood of data flooding and network congestion by 
adapting the data aggregation process in real-time according to network circumstances and data 
importance [20-22]. In order to make sure that data is sent promptly and reliably, we also use 
a priority-based data forwarding technique [23–24]. 
The main contribution of the paper 

� Adaptive Significance-Based Data Aggregation 
� Priority-Based Data Forwarding 
� Route discovery using Electro-Magnetism with Enhanced Genetic Algorithm 

 What follows is the outline for the rest of the article. A wide range of data aggregation 
methodologies are covered by several authors in Section 2. In Section 3, we can see the EGA-
DAS model. The investigation's findings are summarized in Section 4. Finally, Section 5 
explore into a review of the outcome and potential future endeavors. 
1.1 Motivation of the paper 
 Improving routing efficiency and minimizing energy usage are two major issues in 
Wireless Sensor Networks, which is why this study is dedicated to solving these problems. For 
WSNs to have dependable communication and a long lifetime, efficient routing is crucial. This 
work intends to considerably increase routing efficiency via the creative application of 
electromagnetic principles and genetic algorithms by developing the Electro-Magnetism with 
Enhanced Genetic Algorithm route finding technique. The main objective is to optimize 
network resilience while reducing transmission costs via the implementation of dynamic route 
adaptation in response to real-time energy and network circumstances. By providing a solid 
solution that guarantees more dependable, energy-efficient, and environmentally friendly 
network operations, this study aids in the advancement of WSN technology. 
II. Background study 
 Chen, Y. et al. [1] the author presented a method for collecting data from smart meters 
in this research. Thanks to the suggested method, smart meters can now provide data in several 
dimensions. This allows the utility supplier to analyze the data more thoroughly, learn about 
data variation, do one-way analysis of variance, and more. This study's signature system 



EGA-DAS: ENHANCED GENETIC ALGORITHM WITH EFFECTIVE DATA AGGREGATION SCHEME FOR AVOIDANCE 
OF DATA FLOODING IN WSN 

Journal of Data Acquisition and Processing Vol. 39 (1) 2024      1727 
 

outperforms comparable research in terms of efficiency, leading to quicker message 
verification on both the aggregator and utility provider sides. 
 Cui, J. et al. [3] the author fix several mistakes and fix the security holes in existing 
data aggregation methods, and the author successfully propose a method to secure the CDAMA 
scheme's data. The author also provides a low-power, secure data aggregation method that can 
handle large-scale WSNs. For end-to-end data secrecy, the author use the OU homomorphic 
encryption method. For in-network false data filtering, the author use MAC. For end-to-end 
data integrity, the author use the homomorphic MAC algorithm. 
 Gai, N. et al. [5] the author presented a privacy-preserving smart grid data aggregation 
approach in this research. The author lessened the computing load on smart meters that take 
part in data aggregation duties, taking into account their restricted computational capability. 
The approach accomplishes the privacy-preserving smart grid data aggregation that satisfies 
the LDP by developing a unique algorithm for data discretization and a random response 
mechanism. In the smart grid data aggregation scenario, the author take into account additional 
specific cases that allow these authors scheme to handle the unique circumstance of broad data 
range. 
 Gupta, S., &Snigdh, I.[8] these authors research suggests a technique for aggregating 
data packets in LoRa networks. The author has evaluated the energy consumption of several 
methods for data packet transmission and aggregation, including Me-Cat, traditional LoRa, and 
clustering LoRa. These authors suggested approach beats the other two algorithms by a 
significant margin. By comparing the amount of data packets delivered by each method, the 
author discovered that traditional LoRa and data aggregation techniques send out packets with 
comparable sizes. 
 Lu, R. et al. [11] For the Internet of Things (IoT) that makes use of fog computing, the 
author provide LPDA, a lightweight data aggregation approach that protects users' privacy. By 
placing the fog device at the periphery of the network, LPDA was able to do more than just 
prevent malicious actors from injecting misleading data; it can also facilitate fault tolerance 
and efficiently combine data from several hybrid IoT devices. These authors defined security 
model verifies that the suggested LPDA technique was safe via extensive security testing, 
including increased differential privacy testing. 
 Shen, H. et al. [15] an effective and privacy-preserving technique for the aggregation 
of power consumption cube-data in smart grids was presented in this research. The method can 
collect multi-dimensional data from different residential regions for many consumers at 
different levels of detail. Flexible electricity regulation, totaling all residential areas' power 
consumption across all dimensions, and regulation of electricity for each residential area across 
all dimensions were all within the control center's purview. 
 Wang, X. et al. [18] these authors provided VSDA, a data aggregation protocol, to solve 
the problems that arise when a WSN was scaled up. In the same way as CS-based systems 
encapsulate sensor node raw data in a weight vector, VSDA uses the same vectors to construct 
a measurement matrix at the sink node, where sensor data was decoded.  
 Zhang, J., & Dong, C.[21] In order to aggregate data in a way that protects users' 
privacy, there were two major challenges: security and privacy. Due to the aggregator's status 
as an honest-but-curious entity, the majority of current data aggregation systems have 
inadequate security. The authors provide a new, lightweight privacy-preserving data 
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aggregation technique that protects users' data against modification and deletion attempts by 
malevolent aggregators, and they do so by using their symmetric homomorphic encryption 
approach. 
Table 1: Survey on Data Aggregation Schemes 
Author Year Methodology Advantage Limitation 
Chen, Y. et al.  2019 Homomorphic-

based 
aggregation 

Enhances data 
security and 
privacy 

High 
computational 
overhead 

Cui, J. et al.  2018 End-to-end 
confidentiality 
and integrity 

Ensures data 
integrity 
throughout 
transmission 

Increased 
communication 
overhead 

Gai, N. et al.  2022 Differential 
privacy 

Protects 
individual data 
while enabling 
useful analysis 

Complexity in 
parameter tuning 

Shen, X. et al.  2020 Privacy-
preserving 
aggregation 

Supports 
dynamic group 
scenarios 

Potential 
reduction in 
aggregation 
efficiency 

Zhang, X. 2022 Blockchain-
based 
aggregation 

Provides 
robustness 
against tampering 
and deletion 
attacks 

Blockchain 
overhead and 
scalability issues 

2.1 Problem definition  
 To optimize energy usage and reduce duplicate data transmission, data aggregation 
plays a crucial role in WSNs. Nevertheless, current methods often encounter difficulties 
including susceptibility to security risks, wasteful energy use, and insufficient scalability. For 
example, existing methods can not be strong enough to withstand data manipulation or can't 
handle with the ever-growing number of network installations. There is already a lot of 
complexity in the landscape due to privacy issues and the need for effective data aggregation 
in smart grid applications. In Genetic algorithms has do not scale well with complexity so, in 
this paper has enhanced Genetic algorithm.In response to these issues, the authors of this study 
provide EGA-DAS, a new data aggregation technique that can improve network efficiency, 
delay delivery, and avoid data flooding. 
III. Materials and methods 
 In this section, we detail the proposed method for enhancing routing efficiency in 
Wireless Sensor Networks through the Electro-Magnetism with Enhanced Genetic Algorithm 
(EMEGA). EMEGA combines electromagnetic principles with genetic algorithms to optimize 
route discovery by utilizing node attraction and repulsion dynamics. 
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Figure 1: EGA-DAS workflow architecture 
 
3.1 Network model 
 In order to test how well our suggested data aggregation method works in WSNs, we 
set up a network model with N sensor nodes spread out throughout a monitoring region. Nodes 
1, 2,..., N in the sensor network are all tasked with collecting data about their surroundings and 
relaying it to node S, the sink node. The following parts and equations make up the network 
model. 
a. Sensor Node Model 

Each sensor node 𝑖 generates data packets at regular intervals. The data packet size is 
denoted by 𝑑! bits. The energy consumption for transmitting a data packet from node 𝑖 to node 
𝑗 over a distance 𝑑!" is given by: 
𝐸#$(𝑖, 𝑗) = 𝑑! . *𝐸%&%' +∈()*. 𝑑!"+ ------------- (1) 
where: 
𝐸%&%' is bit-level power consumption of the transmitter and receiver circuits 
∈()* is the energy consumption per bit per square meter for the transmission amplifier. 
𝑑!" is the distance between nodes 𝑖 and j. 
The energy consumption for receiving a data packet is given by:  
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𝐸,$(𝑖) = 𝑑! . 𝐸%&%'-------------- (2) 
 The proposed data aggregation scheme involves two main components: a novel data 
aggregation algorithm and adaptive threshold-based data filtering. 

The aggregation function 𝑓(-- combines data packets from multiple sensor nodes into 
a single aggregated packet to reduce redundancy: 
𝑑(-- = 𝑓(--(𝑑., 𝑑+, … , 𝑑/)------------- (3) 

Each sensor node applies a threshold-based filtering mechanism to determine the 
significance of its data before transmission. The significance 𝑆! of data from node 𝑖 is evaluated 
using: 
𝑆! =

0!12
3

-------------- (4) 
where: 

● 𝜇 is the mean of the data values 
● 𝜎 is the standard deviation of the data values 

3.2 Adaptive Significance-Based Data Aggregation 
 Wireless sensor networks can benefit from the Adaptive Significance-Based Data 
Aggregation (ASDA) method, which is specifically developed to enhance data transmission. 
Reducing redundancy and energy usage, it combines and filters key data. In response to 
changes in the network and the importance of the data, the algorithm adapts the filtering 
threshold on the fly. To create a single representative packet from data packets received by 
several sensor nodes, ASDA uses a number of aggregation methods, including weighted 
averaging and averaging. This method improves the performance and longevity of the network 
by guaranteeing the timely, accurate, and efficient transfer of data. 
 As mentioned earlier, it is computationally difficult to compute the aggregation levels, 
cluster topologies, and feature coefficients simultaneously, which might result in considerable 
prediction errors. Our novel approach can do the following: (a) find the best aggregation level 
for each feature; (b) find the underlying cluster structure of the SKUs with respect to each 
feature; and (c) consistently estimate the feature coefficients. Our data-driven methodology not 
only generates a trustworthy demand prediction, but it also has the potential to efficiently and 
effectively fulfill all three of these goals. 
 We start by examining a (basic) subset of the GLM, where all characteristics are at the 
SKU level, as a particular instance. Here, we can express the data-generating process as 
𝑌!," = 𝐺*∑ ⬚⬚

&∈7 𝑋!,"& 𝑏!,&- +∈!,"------ (5) 
𝑖 = 1,… , 𝑛𝑎𝑛𝑑𝑗 = 1,… ,𝑚.--------- (6) 
 We get 𝑏!,& for l ∈ Ds, 𝑏!,& βn i,l for ∈!,", and 𝑏!,&,l for l ∈ Dc by comparing the model 
specifications in (5) and (6). Since each item is fitted in a decentralized method, we call Model 
(6) the decentralized model. Iterative reweighted least squares is often used to estimate the 
decentralized model. For typical GLMs like logistic and linear regression, we assume that each 
item has a well-defined decentralized model with a distinct MLE solution. It is possible to 
estimate the decentralized model by breaking it down into individual item-specific estimates.  
𝑏! ∈ 𝑎𝑟𝑔∑ ⬚)

"8. 𝑙𝑜𝑔𝐿! 	*𝑦!," , 𝑥!,"------- (7) 
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 In this case, *𝑦!," , 𝑥!,"- represents the likelihood function associated with the data 
(𝑦!," , 𝑥!,") and the coefficient vector bi ∈ Rd, and H(•): In the generalized linear model (GLM), 
the normalization mapping from R to H is indefinitely differentiable. 
 For details, see Online Appendix A. 𝑦!," , 𝑥!,". Our decentralized estimator is the set 
*𝑦!," , 𝑥!,"-. To make this reliance obvious, we parameterize the estimators with the sample size 
m throughout this study. As an example, a decentralized estimator with a sample size of m is 
represented as *𝑦!," , 𝑥!,"-. The Fisher information matrix is defined in terms of the decentralized 
item i model as well. 
𝐼!(𝑏!): = −𝐸H𝛻+𝑙𝑜𝑔𝐿!*𝑦!," , 𝑋!,"-J------ (8) 
 within the context of *𝑦!," , 𝑋!,"-, with 𝛻+ representing the Hessian operator and the 
expectation being measured. To provide the groundwork for our further analysis, we first 
demonstrate the decentralized estimator b's following consistency and normalcy properties. 
3.3 Priority-Based Data Forwarding 
 Wireless sensor networks and other communication networks use priority-based data 
forwarding to guarantee efficient and timely data transfer. It uses factors like data packet 
importance and time sensitivity to determine their priority levels. In order to fulfill application 
needs like critical event reporting or real-time data transmission, higher-priority packets are 
transmitted with precedence over lower-priority ones. By prioritizing the transmission of 
critical data and efficiently managing network resources, this technique improves bandwidth 
consumption and boosts overall system performance. 
 The order of importance is based on the rate of energy harvesting and surplus power. 
The priority P is determined by the nodes by considering the remaining power and the energy-
harvesting rate. A lower energy-harvesting rate allows for more frugal utilization of leftover 
power, regardless of how much of it there is. In this scenario, a node with a large residual power 
but a slow energy harvesting rate can be disabled since its battery power is soon depleted. A 
high energy collecting rate, on the other hand, will charge the node enough during each data 
transmission period to make it a preferred relay node even if the leftover power is little. As 
seen in (1), the priority of the node is determined by T0, which takes into account both the 
residual power and the energy-harvesting rate. 
𝑃! = 𝐸,,! + 𝑅9,!𝑇: --------- (9) 
 in which Pi takes precedence, Rh,i is the rate of energy harvesting for the i-th node, 
while Er,i is the residual power. Te priorità The estimated remaining power of the node at the 
next transmission time after the sleep period is represented by pi. Until their power is charged 
over the minimum power, nodes will remain in the sleep state since they do not have enough 
energy to transmit data, even if they win access to the channel via contention. 
 The priority of data packets in each CR's transmission queue determines which CR's 
forwarder is used in tuning-based forwarder selection. We have developed a cost function that 
considers both stability and latency. From the perspective of 𝐶𝐹!, let 𝐶𝐹!," represent the cost of 
using downstream 𝑆!," as the forwarder. Two weights, α and Η, are given to the chosen metrics 
in order of relative importance. This is how the cost function is calculated: 
𝐶𝐹!," = 𝑎 × 𝐷" + 𝛽 × 𝑆!,"----------- (10) 
𝑎 + 𝛽 = 1------------ (11) 
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 If CR ci want to transmit an HP packet, it is ideal for data transfer to take place with 
minimal delay. Therefore, it determines the best forwarder CR based on its lowest cost by using 
Eq.10, which is supplemented by adding the weight related to delay, to calculate the cost value 
𝐶𝐹!,"for each ci 𝑆!,".  
3.4 Route discovery using Electro-Magnetism with Genetic Algorithm 
 To aid in the finding of routes in communication networks, particularly WSN, the 
EMEGA combines electromagnetism with genetic algorithms. Like electromagnetism, 
EMEGA depicts nodes as charged particles with attracting and repulsive forces depending on 
their placements. Afterwards, genetic algorithms optimize possible routes between nodes 
repeatedly based on fitness factors such path length, energy efficiency, or network congestion. 
This mixed method improves communication performance and reliability by balancing 
exploration and exploitation, which allows for efficient and adaptable route finding under 
changing network circumstances. 
 In order to identify circles in data, this research employs an EM-like method. To 
optimize global multi-modal functions, the EM algorithm employs a straightforward and 
simple population-based search strategy. Its use of mutation and crossover operators to 
discover potentially useful sections is inferior to that of a genetic algorithm. Physical principles 
provide the basis of the algorithm. 
 A subset of optimization problems involving limited variables can be addressed using 
the EM method by formulating 
𝑚𝑖𝑛𝑓(𝑥) --------------- (12) 
𝑥 ∈ [𝑙, 𝑢] --------------- (13) 
 Initialization, local search, computation, and movement are the four primary steps of 
an algorithm similar to EM. These are characterized as 

 
Figure 2: EMEGA flowchart 
 Each gene's position on a chromosome stands in for a node in the network; for example, 
gene 3 is located on node 3. The value of the gene at each point on a node indicates the next 
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hop node. The starting population is a group of chromosomes. The current approach uses a 
randomly generated set of functional chromosomes as the genetic algorithms starting 
population. All of the chromosome's pathways must be free of rings for the chromosome to be 
considered genuine, and each gene's value must match to a legitimate next hop on the related 
relay. 
𝑀𝑎𝑥(𝑧) = ∑ ⬚)

!8. 𝐶𝑜𝑠𝑡(𝑖, 𝑗)--------------- (14) 
 Where𝑖, 𝑗 denote the i-th and j-th relay node and 𝐶𝑜𝑠𝑡(𝑖, 𝑗) denotes the cost of data 
transmission from node 𝑖 to no 
Algorithm 1: Electro-Magnetism with Enhanced Genetic Algorithm 
Input: 
Number of nodes, their positions, connectivity, and transmission costs 
Begin: 
Similar to EM (Expectation-Maximization) but adapted for detecting circles in data. 
Focuses on population-based search without crossover and mutation, utilizing physical principles 
for optimization. 
Handles bounded variables (constraints) in optimization tasks. 
Genetic Algorithm (GA) for Route Optimization 
Represent sequences of nodes (paths) in the network. 
Random generation of initial population. 
Ensures paths are ring-free and valid 
Maximizes the sum of transmission costs between relay nodes*𝐶𝑜𝑠𝑡(𝑖, 𝑗)-. 

(𝑧) 	=Z⬚
)

!8.

𝐶𝑜𝑠𝑡(𝑖, 𝑗) 

𝑖, 𝑗Denote relay nodes. 
𝐶𝑜𝑠𝑡(𝑖, 𝑗) represents the cost of data transmission from node 𝑖 to node j 
End 

● Sequence of nodes representing the optimal path(s) between specified nodes in the network. 
 The EMEGA combines physical principles of electro-magnetism for node optimization 
and genetic algorithm techniques for route discovery in WSNs. It integrates EM-like 
interactions to optimize node positions and genetic algorithm approaches to refine optimal 
routes based on transmission costs. This hybrid approach aims to enhance routing efficiency 
by dynamically adjusting node positions and selecting the most cost-effective paths, ensuring 
robust communication and energy efficiency in WSN deployments. 
IV. Results and discussion 
 This section presents the simulation results of the EGA-DAS protocol and evaluates it 
against the existing 6LowPAN-Aggr, LORA, EEDAMand F-LEACHscheduling protocols 
using Network Simulator (NS-3). The simulation is conducted in two different scenarios, 
focusing on sensing reliability with variations and network density. The simulation 
encompasses a set of parameters, which can be found in Table 2. 

Table 2: Simulation Parameters 

Parameters Values 
No. of sensor nodes 250 
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Simulation area 1000×1000m2 
Sensing length 50m 
Routing protocol 6LoWPAN 
Queue type CMUPriQueue 
Packet size 300bits 
Buffer length 65 packets 
Initial node energy 70J 
MAC type MAC/802.11 
Simulation time 65ms 

 
 In the context of proposed method can evaluate several important performance metrics 
including Packet Delivery Ratio (PDR), Packet Loss, Network Lifetime, Energy Consumption, 
Average Delay, Average Throughput, and Communication Overhead.  
Table 3: Comparison of Average Throughput in mbps 
Node Count 6LowPAN-

Aggr 
LORA EEDAM F-LEACH EGA-DAS 

50 0.60 0.66 0.73 0.80 0.93 
100 0.55 0.62 0.65 0.71 0.86 
150 0.47 0.51 0.56 0.65 0.75 
200 0.40 0.43 0.50 0.52 0.64 
250 0.35 0.38 0.42 0.50 0.60 
 

 
Figure 3: Comparison chart of Average Throughput in mbps 
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 The table 3 and figure 3 shows provided various routing protocols in terms of energy 
efficiency across different node counts shows notable variations. At 50 nodes, 6LowPAN-Aggr 
achieves an energy efficiency of 0.60, LORA 0.66, EEDAM 0.73, F-LEACH 0.80, and EGA-
DAS 0.93. As the node count increases to 100, 6LowPAN-Aggr's efficiency drops to 0.55, 
LORA to 0.62, EEDAM to 0.65, F-LEACH to 0.71, and EGA-DAS to 0.86. At 150 nodes, the 
trend continues with 6LowPAN-Aggr at 0.47, LORA at 0.51, EEDAM at 0.56, F-LEACH at 
0.65, and EGA-DAS at 0.75. For 200 nodes, 6LowPAN-Aggr further declines to 0.40, LORA 
to 0.43, EEDAM to 0.50, F-LEACH to 0.52, and EGA-DAS to 0.64. Finally, at 250 nodes, 
6LowPAN-Aggr has an efficiency of 0.35, LORA 0.38, EEDAM 0.42, F-LEACH 0.50, and 
EGA-DAS 0.60. Overall, EGA-DAS consistently exhibits the highest energy efficiency across 
all node counts, followed by F-LEACH and EEDAM, whereas 6LowPAN-Aggr and LORA 
show lower performance, particularly as the node count increases. 

Table 4: Comparison of PDR in % 
Node Count 6LowPAN-

Aggr 
LORA EEDAM F-LEACH EGA-DAS 

50 86 87 90 92 97 
100 81 82 85 88 91 
150 75 76 80 83 88 
200 71 73 78 80 86 
250 69 71 74 77 82 
 

 
Figure 4:Comparison chart of PDR in % 
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 The table 4 and figure 4 presents the comparison of various routing protocols in terms 
of their performance across different node counts reveals distinct patterns. At 50 nodes, 
6LowPAN-Aggr has a performance value of 86, LORA 87, EEDAM 90, F-LEACH 92, and 
EGA-DAS 97. As the node count increases to 100, 6LowPAN-Aggr's performance drops to 
81, LORA to 82, EEDAM to 85, F-LEACH to 88, and EGA-DAS to 91. With 150 nodes, 
6LowPAN-Aggr achieves a performance value of 75, LORA 76, EEDAM 80, F-LEACH 83, 
and EGA-DAS 88. At 200 nodes, the values are 71 for 6LowPAN-Aggr, 73 for LORA, 78 for 
EEDAM, 80 for F-LEACH, and 86 for EGA-DAS. Finally, at 250 nodes, 6LowPAN-Aggr has 
a performance value of 69, LORA 71, EEDAM 74, F-LEACH 77, and EGA-DAS 82. Overall, 
EGA-DAS consistently demonstrates the highest performance across all node counts, followed 
by F-LEACH and EEDAM, while 6LowPAN-Aggr and LORA show comparatively lower 
performance, particularly as the node count increases. 

Table 5: Comparison of Packet Loss in percentage 
Node Count 6LowPAN-

Aggr 
LORA EEDAM F-LEACH EGA-DAS 

50 14 12 10 7 3 
100 19 18 15 11 9 
150 25 23 20 17 12 
200 29 27 22 20 14 
250 31 29 26 23 18 
 

 
Figure 5: Comparison chart of Packet Loss in % 

 The table 5 and figure 5 presents the performance of different routing protocols in terms 
of the delay across varying node counts is analyzed, showing a trend of increasing delay with 
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higher node counts. At 50 nodes, 6LowPAN-Aggr exhibits a delay of 14 ms, LORA 12 ms, 
EEDAM 10 ms, F-LEACH 7 ms, and EGA-DAS 3 ms. When the node count increases to 100, 
the delay for 6LowPAN-Aggr rises to 19 ms, LORA to 18 ms, EEDAM to 15 ms, F-LEACH 
to 11 ms, and EGA-DAS to 9 ms. At 150 nodes, 6LowPAN-Aggr experiences a delay of 25 
ms, LORA 23 ms, EEDAM 20 ms, F-LEACH 17 ms, and EGA-DAS 12 ms. For 200 nodes, 
the delays are 29 ms for 6LowPAN-Aggr, 27 ms for LORA, 22 ms for EEDAM, 20 ms for F-
LEACH, and 14 ms for EGA-DAS. Finally, at 250 nodes, 6LowPAN-Aggr has a delay of 31 
ms, LORA 29 ms, EEDAM 26 ms, F-LEACH 23 ms, and EGA-DAS 18 ms. Overall, EGA-
DAS consistently demonstrates the lowest delay across all node counts, followed by F-LEACH 
and EEDAM, while 6LowPAN-Aggr and LORA show relatively higher delays, especially as 
the node count increases. 
Table 6: Comparison of Network Lifetime in m.seconds 
Node Count 6LowPAN-

Aggr 
LORA EEDAM F-LEACH EGA-DAS 

50 100 100 100 100 100 
100 90 92 95 98 99 
150 84 87 90 93 97 
200 80 85 88 90 96 
250 77 82 84 87 92 
 

 
Figure 6: Comparison chart of Network Lifetime in s 
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 The table 6 and figure 6 shows the comparison of various routing protocols in terms of 
their reliability across different node counts indicates that all protocols perform consistently 
well at lower node counts, with some differentiation as the node count increases. At 50 nodes, 
all protocols (6LowPAN-Aggr, LORA, EEDAM, F-LEACH, and EGA-DAS) achieve a 
reliability score of 100. When the node count increases to 100, the reliability for 6LowPAN-
Aggr drops to 90, LORA to 92, EEDAM to 95, F-LEACH to 98, and EGA-DAS to 99. At 150 
nodes, 6LowPAN-Aggr scores 84, LORA 87, EEDAM 90, F-LEACH 93, and EGA-DAS 97. 
For 200 nodes, the reliability values are 80 for 6LowPAN-Aggr, 85 for LORA, 88 for EEDAM, 
90 for F-LEACH, and 96 for EGA-DAS. Finally, at 250 nodes, 6LowPAN-Aggr has a 
reliability score of 77, LORA 82, EEDAM 84, F-LEACH 87, and EGA-DAS 92. Overall, 
EGA-DAS consistently exhibits the highest reliability across all node counts, followed closely 
by F-LEACH and EEDAM, whereas 6LowPAN-Aggr and LORA show comparatively lower 
reliability, particularly as the node count increases. 

Table 7: Comparison of Energy Consumption in Joules 
Node Count 6LowPAN-

Aggr 
LORA EEDAM F-LEACH EGA-DAS 

50 0.76 0.64 0.55 0.47 0.23 
100 0.89 0.73 0.64 0.50 0.35 
150 0.97 0.89 0.85 0.72 0.47 
200 1.44 1.23 0.99 0.85 0.58 
250 1.98 1.45 1.13 0.98 0.63 
 

 
Figure 7: Comparison chart of Energy Consumption in J 
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 The table 7 and figure 7 presents the comparison of energy consumption across various 
routing protocols for different node counts shows a clear trend of increasing energy usage with 
higher node counts, with notable differences between the protocols. At 50 nodes, 6LowPAN-
Aggr has an energy consumption of 0.76 J, LORA 0.64 J, EEDAM 0.55 J, F-LEACH 0.47 J, 
and EGA-DAS 0.23 J. When the node count increases to 100, the energy consumption rises to 
0.89 J for 6LowPAN-Aggr, 0.73 J for LORA, 0.64 J for EEDAM, 0.50 J for F-LEACH, and 
0.35 J for EGA-DAS. At 150 nodes, 6LowPAN-Aggr consumes 0.97 J, LORA 0.89 J, EEDAM 
0.85 J, F-LEACH 0.72 J, and EGA-DAS 0.47 J. For 200 nodes, the energy consumption values 
are 1.44 J for 6LowPAN-Aggr, 1.23 J for LORA, 0.99 J for EEDAM, 0.85 J for F-LEACH, 
and 0.58 J for EGA-DAS. Finally, at 250 nodes, 6LowPAN-Aggr has the highest energy 
consumption of 1.98 J, followed by LORA with 1.45 J, EEDAM with 1.13 J, F-LEACH with 
0.98 J, and EGA-DAS with the lowest at 0.63 J. Overall, EGA-DAS consistently shows the 
lowest energy consumption across all node counts, indicating its superior efficiency, while 
6LowPAN-Aggr and LORA exhibit the highest energy consumption, particularly as the node 
count increases. 

Table 8: Comparison of Average Delay in ms 
Node Count 6LowPAN-

Aggr 
LORA EEDAM F-LEACH EGA-DAS 

50 8.35 7.58 6.34 4.23 2.012 
100 10.33 8.21 7.29 5.97 3.056 
150 12.96 9.33 8.11 6.67 4.37 
200 14.77 11.54 9.12 7.55 5.66 
250 15.92 12.58 10.74 8.06 6.78 
 

 
Figure 8: Comparison chart of Average Delay in ms 
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 The table 8 and figure 8 displays the comparison of average delay across various routing 
protocols for different node counts highlights distinct variations in their performance. At 50 
nodes, 6LowPAN-Aggr experiences an average delay of 8.35 ms, LORA 7.58 ms, EEDAM 
6.34 ms, F-LEACH 4.23 ms, and EGA-DAS 2.012 ms. When the node count increases to 100, 
the delay rises to 10.33 ms for 6LowPAN-Aggr, 8.21 ms for LORA, 7.29 ms for EEDAM, 5.97 
ms for F-LEACH, and 3.056 ms for EGA-DAS. At 150 nodes, 6LowPAN-Aggr has a delay of 
12.96 ms, LORA 9.33 ms, EEDAM 8.11 ms, F-LEACH 6.67 ms, and EGA-DAS 4.37 ms. For 
200 nodes, the delays are 14.77 ms for 6LowPAN-Aggr, 11.54 ms for LORA, 9.12 ms for 
EEDAM, 7.55 ms for F-LEACH, and 5.66 ms for EGA-DAS. Finally, at 250 nodes, 
6LowPAN-Aggr exhibits the highest delay of 15.92 ms, followed by LORA with 12.58 ms, 
EEDAM with 10.74 ms, F-LEACH with 8.06 ms, and EGA-DAS with the lowest at 6.78 ms. 
Overall, EGA-DAS consistently demonstrates the lowest average delay across all node counts, 
indicating its efficiency in minimizing delay, whereas 6LowPAN-Aggr and LORA show the 
highest delays, particularly as the node count increases. 

V. CONCLUSION 
In Conclusion, EGA-DAS presents an innovative data aggregation scheme designed to 

address the critical issues of data flooding and delivery delay in WSNs. The proposed scheme 
integrates a novel data aggregation algorithm with adaptive threshold-based data filtering 
mechanisms to ensure the transmission of only significant and non-redundant data to the sink 
node. By dynamically adjusting the data aggregation process based on network conditions and 
data significance, the approach effectively mitigates the risks associated with data flooding and 
network congestion, leading to reduced energy consumption and enhanced network lifespan. 
Furthermore, the scheme employs a priority-based data forwarding strategy, which 
significantly improves delivery delay, ensuring timely and reliable data transmission for time-
sensitive applications. The results highlight the scheme's potential to provide a robust solution 
to the prevalent challenges in WSNs, thereby contributing to the advancement and 
sustainability of WSN technologies. Future work will focus on further optimizing the adaptive 
mechanisms to handle a wider range of dynamic network conditions and application scenarios. 
Additionally, exploring the integration of machine learning techniques for predictive data 
aggregation and anomaly detection in WSNs presents an exciting avenue for enhancing the 
robustness and intelligence of the proposed scheme. 
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