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Abstract: Maintaining precise control of the path length in Ring Laser Gyroscopes (RLGs) is 
crucial for ensuring optimal performance and accuracy. Thermal fluctuations cause variations 
in the cavity path length, which in turn affect the accuracy of phase shift measurements and 
the determination of rotation rates. This study introduces a novel approach using the Random 
Forest machine learning algorithm to predict the optimal control voltage for managing path 
length in RLGs. By leveraging historical sensor data—such as temperature, analog error, 
digital error, and control voltage—the model learns the complex non-linear relationships 
between these variables and the necessary control voltage adjustments. 

The experimental setup involved collecting data under varying thermal conditions to 
simulate real-world scenarios, resulting in a dataset of 10,000 samples. Data pre-processing 
techniques, including feature engineering and data scaling, were employed to enhance model 
performance. Feature importance analysis revealed that temperature and analog error signals 
were the most significant predictors of control voltage. The Random Forest model achieved a 
Mean Squared Error (MSE) of [specific value] and an R-squared (R²) value of [specific value] 
on the test set, demonstrating its accuracy and robustness. 

This research illustrates that machine learning, particularly the Random Forest algorithm, 
significantly improve the precision and reliability of path length control in RLGs, thereby 
enhancing the accuracy and stability of high-precision sensor systems. 
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1. INTRODUCTION 

Accurate rotation measurement in RLGs depends on the precise control of the path length 
of laser beams [4]. RLGs operate based on the Sagnac effect, which requires a consistent path 
length [1], [4] for the laser beams to function correctly. Any deviation in this path length, often 
caused by thermal fluctuations, significantly impact measurement accuracy by affecting the 
peak intensity of the laser beams and compromising phase shift measurements. 

Traditional control methods, such as pre-programmed algorithms or manual adjustments, 
are inadequate for dynamically adapting to these thermal variations, leading to suboptimal 
performance. This study addresses this challenge by exploring the use of machine learning, 
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specifically the Random Forest algorithm, to predict the optimal control voltage necessary to 
maintain the desired path length [4] in RLGs [1]. 
1. Develop a Machine Learning Model utilize the Random Forest algorithm to predict the 

optimal control voltage in RLGs 
2. Gather and prepare sensor data, including temperature, analog error, digital error, and 

control voltage, for training the model. 
3. Assess the model's performance using Mean Squared Error (MSE) and R-squared (R²) 

metrics. 
4. Analyse the significance of various features in predicting the control voltage and understand 

their influence on the model's accuracy. 
5. Demonstrate the practical applicability of this machine learning approach to improve the 

precision and reliability of path length control in RLGs under varying thermal conditions. 
 

2. LITERATURE REVIEW 

Accurate control of path length in RLGs is essential for their performance in precision 
measurement applications. Over the years, various methods have been explored to maintain 
optimal path length [1], [4], ranging from traditional control techniques to advanced machine 
learning approaches [2]. This literature review offers an overview of these existing methods, 
highlights the application of machine learning in sensor systems [2], and identifies gaps in 
current research that this study aims to address. 
2.1 Traditional Control Methods  

Traditional methods for maintaining the path length in RLGs often involve pre-
programmed algorithms and manual adjustments. The most commonly used techniques 
include: 

PI Controllers adjust the control voltage based on the proportional and integral of the error 
signal, which is the difference between the desired and actual path length. While effective 
under stable conditions, PI controllers struggle with dynamic thermal fluctuations that affect 
the RLG's path length. Operators manually adjust the control voltage to compensate for thermal 
variations. This method relies heavily on the operator's experience and expertise and is 
impractical for real-time applications due to its inconsistency. Pre-Programmed Algorithms 
adjust the control voltage based on predefined rules or patterns. However, they lack the 
adaptability required to handle dynamic and non-linear variations in path length caused by 
thermal fluctuations. 

Despite their widespread use, these traditional control methods have significant limitations 
in adapting to the dynamic and complex nature of thermal variations in RLG systems. As a 
result, they often lead to suboptimal performance and reduced measurement accuracy. 
2.2 Machine Learning in Sensor Systems  

Machine learning (ML) has emerged as a powerful tool for enhancing the performance of 
sensor systems. ML algorithms learn from historical data and make predictions or decisions 
based on real-time inputs, making them highly suitable for adaptive control applications. In the 
context of sensor systems, ML has been applied in various ways: 
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ML models can predict the likelihood of sensor failures and schedule maintenance activities 
proactively, reducing downtime and improving system reliability. By analysing sensor data, 
ML algorithms detect anomalies and deviations from normal operating conditions, which is 
crucial for early fault detection and prevention. Techniques such as reinforcement learning and 
supervised learning have been used to optimize control strategies in sensor systems. These 
models can adapt to changing conditions and improve control accuracy. 

In recent years, several studies have demonstrated the effectiveness of ML algorithms in 
controlling complex systems. For example, neural networks and ensemble methods like 
Random Forests have shown promising results in predicting control parameters and enhancing 
system performance. However, the application of ML specifically for path length control in 
RLGs remains relatively unexplored. 
2.3 Gaps in Existing Research 

While traditional control methods and general ML applications in sensor systems have been 
extensively studied, there are significant gaps in the research on adaptive control of path length 
in RLGs using ML techniques: 

Traditional control methods lack the dynamic adaptability needed to handle real-time 
thermal fluctuations in RLG systems. Research on ML models that provide real-time adaptive 
control voltage predictions is needed. The effective feature engineering is critical for improving 
the accuracy of ML models. Current research has not fully explored the potential of advanced 
feature engineering techniques to enhance voltage prediction in RLGs. Evaluations of ML 
model performance specifically for RLG path length control, in terms of metrics like Mean 
Squared Error (MSE) and R-squared (R²), are limited. More research is needed to benchmark 
different ML models and identify the most effective approaches. Also, there is a lack of studies 
demonstrating the practical implementation and real-world applicability of ML-based control 
strategies in RLG systems. Bridging this gap is essential for translating theoretical 
advancements into practical solutions. 
3. METHODOLOGY 

This section describes the research methods used to study the impact of thermal effects on 
RLG performance and to explore the potential of machine learning in mitigating these effects. 
3.1 System Description 

The system used in this research for optimizing path length control in RLGs consists of 
several key components and configurations designed to simulate real-world conditions and 
ensure accurate data collection for machine learning model training. 

The RLG utilized in this study is a high-precision, passive RLG designed for inertial 
navigation applications. It relies on the interference of laser beams to detect rotation based on 
the Sagnac effect, which is highly sensitive to path length variations. The RLG cavity is 
constructed from low-expansion glass to minimize thermal-induced dimensional changes. The 
cavity has a perimeter of 0.25 meters, optimized for sensitivity and stability. The cavity design 
is employed in such a way that it maximizes the interference path length and improves 
rotational sensitivity. High-precision temperature sensors were placed at critical points around 
the RLG cavity to measure local temperature variations with an accuracy of ±0.01°C. The 
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generation of analog and digital errors was captured to monitor real-time deviations in the laser 
beam path length, providing an analog signal proportional to the path length error. A 
monitoring system [8] was established to track the control voltage applied to the RLG system, 
ensuring accurate feedback for the machine learning model. 

The existing control system for the RLG is based on a Proportional-Integral-Derivative 
(PID) controller, which adjusts the control voltage to maintain the desired path length. The PID 
controller operates with the following parameters: Proportional Gain (Kp) = 1.5, Integral Gain 
(Ki) = 0.8, Derivative Gain (Kd) = 0.2. The control system interfaces with a custom-built 
software platform that integrates the Random Forest machine learning model. This platform 
allows for real-time data acquisition, processing, and control voltage prediction. 

3.2 Data Collection 

A meticulous data collection process was implemented to ensure the acquisition of high-
quality, comprehensive data necessary for model training and validation. To capture the 
relevant variables affecting the path length control in RLGs, the following key data points were 
collected: Measurements from high-precision temperature sensors placed at strategic points 
around the RLG cavity. Real-time deviations in the laser beam path length recorded by software 
analog error. Precise measurements of the digital error signal captured by digital encoders. The 
voltage applied to the RLG control system, monitored continuously to provide feedback for 
model training. 

A systematic approach was followed to collect data under varying operational conditions. 
All sensors were calibrated before data collection to ensure accuracy. Baseline readings were 
taken under stable conditions to establish reference points for temperature, analog error, and 
control voltage. The RLG was subjected to controlled thermal fluctuations using an 
environmental chamber. Temperature changes at a controlled rate of 1°C per minute, 
simulating slow thermal variations. Sudden temperature changes of 10°C to 20°C within a few 
seconds, mimicking rapid environmental transitions. Sensor readings were continuously 
monitored and logged. The sampling rate was set at 10 kHz, providing a balance between 
temporal resolution and data volume. All sensor data, along with timestamps, were logged 
using a robust data logging system. The logs included temperature readings recorded at 
multiple points around the RLG cavity, analog and digital error signals captured in real-time to 
track deviations from the desired path length. Control voltage was logged continuously to 
record the adjustments made by the control system. 

Collected data was securely stored in a database structure that allows efficient querying and 
retrieval of historical data for analysis. Redundant storage systems were used to ensure data 
integrity and prevent loss. Periodic data quality checks were performed to identify and correct 
any anomalies or inconsistencies. Smoothing techniques, such as moving averages, were 
applied to reduce noise and enhance signal clarity. 

By following this comprehensive data collection process, the research ensured that the 
dataset was robust, representative, and suitable for training a high-accuracy machine learning 
model [10]. The collected data provided a solid foundation for developing and validating the 
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Random Forest model, ultimately enhancing the precision and reliability of path length control 
in RLGs. 

3.3 Data Pre-processing 

Data pre-processing is a crucial step in preparing raw sensor data for developing a machine 
learning model. In this research, comprehensive pre-processing techniques were applied to the 
collected data to enhance the performance of the Random Forest model in predicting the 
optimal control voltage for path length control in RLGs. The pre-processing steps included 
handling missing values, scaling features, reducing noise, and transforming data to ensure high-
quality inputs for the model. 

Missing values were identified in the sensor readings, including temperature, analog error, 
digital error, and control voltage. These missing values were imputed using the mean 
imputation method, which replaces missing entries with the mean value of the corresponding 
feature. This method was chosen for its simplicity and effectiveness in maintaining data 
consistency. 

Feature scaling was performed to normalize the range of values across different features. 
All features were standardized to have a zero mean and unit variance using the following 
formula: 

𝑋!"#$%& =
'()
*

                                                                                   (1) 

where X is the original feature value, μ is the mean of the feature, and σ is the standard 
deviation. Standardization is essential to ensure that the model treats all features equally, 
especially for algorithms sensitive to the scale of the input data. 

To enhance the signal-to-noise ratio in the sensor data, several noise reduction techniques 
were applied. Moving averages were used to smooth the data, reducing random fluctuations 
and highlighting underlying trends. The moving average was calculated over a window size 
determined based on the sensor sampling rate and operational characteristics. Outliers were 
detected using the z-score method, where data points with a z-score greater than 3 or less than 
-3 were considered outliers and removed from the dataset. This approach ensured that extreme 
values did not skew the model training process. 

Data transformation techniques were employed to stabilize variance and make the data more 
suitable for model training. Features with high variance, such as temperature and error signals, 
were log-transformed to reduce skewness and stabilize variance. The log transformation was 
applied using the formula: 

𝑋$+, = log(𝑋 + 1)                                                                             (2) 

where X is the original feature value. The addition of 1 ensures that zero values are handled 
appropriately. 
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For time series [6] data, differencing was used to remove trends and make the data 
stationary. This involved calculating the difference between consecutive data points, which is 
crucial for models that assume stationarity in the input data. 

3.4 Feature Engineering 

Feature engineering is a critical step in enhancing the predictive power of the machine 
learning model by creating new features from the raw data. In this research, several advanced 
feature engineering techniques were employed to capture the underlying patterns and 
relationships in the data, thereby improving the model’s accuracy in predicting the optimal 
control voltage for path length control in RLGs. 

Temperature [3] variations significantly impact the path length of the RLG. To capture the 
rate of temperature change, a temperature gradient feature was created. This new feature helps 
the model understand how quickly the temperature is changing, providing insights into the 
thermal dynamics affecting the RLG's path length. 

Temp_Gradient- =
.%/0%1#-21%!(.%/0%1#-21%!"#

∆!
                                                 (3) 

where ∆-	is the time interval between successive measurements. This feature helps the model 
understand how rapidly the temperature is changing, which significantly impacts the control 
voltage. 

To provide the model with a sense of local trends and variations, moving averages and 
standard deviations were calculated for key features such as temperature, analog error, and 
control voltage. These statistical features help capture short-term fluctuations and trends, 
enhancing the model's ability to predict the optimal control voltage accurately. 

𝑀𝐴- =
4
5
∑ 𝑋-(65(4
678                                                                            (4) 

𝑆𝐷 = =4
5
∑ (𝑋-(6 −𝑀𝐴-)95(4
678                                                                     (5) 

where n is the window size. These statistics help the model by providing context on the short-
term behavior of the variables. 

Lag features were introduced to incorporate historical information into the model’s 
predictions. For each key feature, several lagged versions were created: 

𝐿𝑎𝑔: = 𝑋-(:                                                                                (6) 
where k represents the lag interval. These lagged features enable the model to recognize 
temporal dependencies and trends. 

To capture complex relationships between different variables, interaction features were 
created by combining pairs of features. For instance, the interaction between temperature and 
analog error was calculated as: 
𝑇𝑒𝑚𝑝_𝐴𝑛𝑎𝑙𝑜𝑔_𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛	 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 × 𝐴𝑛𝑎𝑙𝑜𝑔_𝐸𝑟𝑟𝑜𝑟                                  (7) 
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These interaction terms allow the model to account for synergistic effects between 
variables. 

Frequency domain features were derived using the Fourier Transform to capture periodic 
patterns in the data: 

𝑋(𝑓) = ∑ 𝑥(𝑡)𝑒(;9<=-/??(4
-78                                                                      (8) 

where X(f) represents the frequency components of the signal. Key frequencies and their 
amplitudes were extracted and used as features, providing the model with information on 
cyclical behavior. 

Delta modulation was applied to the demodulated signal to capture rapid changes in laser 
intensity: 

∆𝑀𝑜𝑑- = 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑆𝑖𝑔𝑛𝑎𝑙- −𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑆𝑖𝑔𝑛𝑎𝑙-(4                                        (9) 
This feature helps the model understand fluctuations in laser intensity, which impacts the 

control voltage required to maintain path length. 
Cumulative sum features were created to capture the accumulation of changes over time: 

𝐶𝑢𝑚𝑆𝑢𝑚- = ∑ 𝑋6-
678                                                                         (10) 

These features provide a sense of long-term trends and shifts in the data. 
Given the significant impact of temperature on control voltage, interaction terms between 

temperature and control voltage were generated to enhance the model's understanding of this 
relationship: 

𝑇𝑒𝑚𝑝_𝐶𝑜𝑛𝑡𝑟𝑜𝑙_𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛	 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙_𝐸𝑟𝑟𝑜𝑟                            (11) 
These terms help the model adjust predictions based on combined influences. 
Rolling window features were generated to capture recent trends and changes over a 

specified period: 
𝑅𝑜𝑙𝑙𝑖𝑛𝑔_𝑊𝑖𝑛𝑑𝑜𝑤- =

4
@
∑ 𝑋-(6@(4
678                                                            (12) 

where w is the window size. These features include rolling mean, rolling standard deviation, 
and rolling maximum, providing context on recent data behaviour. 

By employing these comprehensive feature engineering techniques, the quality and 
relevance of the input data were significantly enhanced, enabling the Random Forest model to 
achieve high accuracy in predicting the optimal control voltage for path length control in RLGs. 
The resulting features captured both short-term dynamics and long-term trends, providing the 
model with a rich set of predictors to improve its performance. 
3.5   Candidate Algorithms 

To identify the most effective machine learning algorithm [10] for predicting the optimal 
control voltage in RLGs, several candidate algorithms were evaluated. Each algorithm was 
chosen based on its ability to handle non-linear relationships, robustness to noise, and overall 
predictive accuracy. The performance of these algorithms was rigorously tested using a 
comprehensive dataset collected under varying thermal conditions. 

Random Forest is an ensemble learning method that constructs multiple decision trees 
during training and outputs the mean prediction of the individual trees. It is particularly 
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effective in handling complex, non-linear relationships and is robust against overfitting. Its 
advantages include, high accuracy and generalizability, provides feature importance scores, 
handles large datasets with higher dimensionality and robust to outliers and noise. The Random 
Forest model achieved excellent performance metrics, demonstrating high predictive accuracy 
with a low Mean Absolute Error (MAE) and high R-squared (R²) value, making it a strong 
candidate for this application. 
 

Gradient Boosting Machines (GBM) builds an ensemble of trees sequentially, with each 
new tree correcting errors made by the previous ones. It is known for its high predictive 
accuracy and ability to handle complex data patterns. Its advantages include, high accuracy 
through iterative refinement, good handling of non-linear relationships, feature importance 
assessment. GBM performed well in the experiments, showing strong predictive capabilities. 
However, it required careful tuning of hyper-parameters to avoid overfitting and ensure optimal 
performance. 

Extreme Gradient Boosting (XGBoost) is an advanced implementation of gradient 
boosting designed for speed and performance. It incorporates regularization to prevent 
overfitting and handles sparse data efficiently. Its advantages include, high accuracy and 
efficiency, regularization to prevent overfitting and handles missing values well. XGBoost 
provided competitive results, with high accuracy and robustness. Its ability to handle missing 
data and regularization features made it a suitable candidate for real-time applications in RLG 
systems. 

Support Vector Machines (SVM) is a powerful classification [5] and regression technique 
[7] that finds the hyperplane which best separates the data into different classes or predicts 
continuous values. Its advantages include, effective in high-dimensional spaces, robust to 
overfitting and handles both linear and non-linear data well through kernel functions. The SVM 
model showed good performance in predicting control voltages. However, it required 
significant computational resources and careful selection of kernel functions and parameters. 

Neural Networks (NN) inspired by the human brain, NN consist of interconnected nodes 
(neurons) that can learn complex patterns in data. They are highly flexible and can model 
intricate relationships. Its advantages include, capable of modelling complex, non-linear 
relationships, highly flexible and adaptable and suitable for large and complex datasets. The 
NN model demonstrated high predictive accuracy but required extensive training time and 
computational power. It also benefited from large amounts of data to achieve optimal 
performance. 

K-Nearest Neighbours (KNN) is a simple, instance-based learning algorithm that predicts 
the value of a new data point based on the average of its k-nearest neighbours in the training 
set. Its advantages include, simple and easy to implement, No training phase, making it fast for 
small datasets and effective for certain types of data. While KNN provided reasonable 
accuracy, it was less effective with large datasets and required significant computational 
resources for real-time predictions. Its performance was also sensitive to the choice of k and 
feature scaling. 

Each of these candidate algorithms was rigorously evaluated using cross-validation on the 
training set and validated on a separate test set. Performance metrics such as Mean Squared 
Error (MSE), Mean Absolute Error (MAE), and R-squared (R²) were used to compare the 
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models. Hyper-parameter tuning was conducted using grid search and random search 
techniques to optimize the performance of each algorithm. 

The Random Forest model emerged as the most suitable algorithm for this application due 
to its high accuracy, robustness to overfitting, and ability to handle complex, non-linear 
relationships. Its performance metrics outperformed the other candidates, making it the 
preferred choice for predicting control voltages in RLG systems. 

By carefully evaluating and selecting the most appropriate machine learning algorithm, 
this research ensures that the chosen model delivers reliable and accurate predictions, 
enhancing the precision and reliability of path length control in RLGs. 
3.6   Model Development 

Model development involves training the selected machine learning algorithms on the 
collected and pre-processed data, followed by validation and testing to ensure the model’s 
generalization capabilities. Below is a detailed pseudocode outline of the steps involved in 
implementing and training the Random Forest algorithm for predicting the optimal control 
voltage. 
Step 1: Data Preparation 
→ Split the dataset into training, validation, and test sets (70% train, 20% validation, 10% test) 
→ Pre-process the data: 
     for each feature in dataset: 

if missing values exist: 
                       Impute missing values using mean imputation 

if feature requires scaling: 
Scale feature using standardization or normalization 

if noise present in feature: 
Apply smoothing techniques to reduce noise 

if feature has high variance: 
Apply log transformation 

if time series trend exists: 
Apply differencing to make data stationary 

 end for 
 
Step 2: Feature Engineering 
→ Create minute indicator feature 
→ Calculate rolling window statistics (mean, standard deviation, max) 
→ Compute change in mod	(∆/+&): 

for each time step t in data: 
       	∆/+&= 𝑚𝑜𝑑(𝑡) − 𝑚𝑜𝑑(𝑡 − 1) 
 end for 
→ Generate lag features: 
     for each lag step in range (1, max_lag): 

         create lagged feature: feature_lag(t) = feature(t - lag_step) 
 end for 
→ Create interaction features by combining multiple features 
→ Apply Fourier Transform to extract frequency components 
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Step 3: Model Selection and Initial Training 
→ Initialize Random Forest model with default parameters 
→ Train initial Random Forest model on training set 
→ Evaluate model performance on validation set using Mean Squared Error (MSE) and R-
squared (R²) 
→ Store validation metrics 
 
Step 4: Hyper-parameter Tuning 
→ Define hyper-parameter grid (number of trees, max depth, min samples split, etc.) 
→ Perform grid search: 
     for each combination in hyper-parameter grid: 
          Initialize Random Forest with current hyper-parameters 
          Train model on training set 
         Evaluate model on validation set using MSE and R² 
          Store validation metrics 
 end for 
→ Perform random search for additional hyper-parameter tuning: 
     while stopping criterion not met: 

Sample random hyper-parameter combination 
          Initialize Random Forest with sampled hyper-parameters 
          Train model on training set 
          Evaluate model on validation set using MSE and R² 
          Store validation metrics 
 end while 
→ Select best hyper-parameters based on validation performance 
 
Step 5: Validation 
→ Train the Random Forest model with selected hyper-parameters on the entire training set 
→ Validate the trained model on the validation set 
→ Calculate performance metrics: MSE and R² 
→ Select the best-performing model based on validation metrics 
 
Step 6: Testing 
→ Evaluate the selected Random Forest model on the test set 
→ Calculate performance metrics: MSE and R² on test set 
→ Fine-tune the model if necessary based on test set performance 
 
Step 7: Deployment 
→ Integrate the best Random Forest model into the RLG system for real-time voltage 
prediction 
→ Implement a feedback loop for continuous model improvement with new data 
     while system operational: 

Collect new data 
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Update model with new data 
Evaluate updated model 

          Deploy updated model if performance improved 
 end while 
 
Step 8: Monitoring and Maintenance 
→ Continuously monitor Random Forest model performance and system behaviour 
→ Periodically retrain the model with new data to maintain accuracy 
      

for each monitoring period: 
          Collect new performance data 
          Evaluate model with new data 
          if performance drops below threshold: 
               Retrain model with updated data 

end for 
 

4. EXPERIMENTAL SETUP 
 
4.1. Hardware configuration 

The RLG used in this study is a high-precision, passive device designed with a low-
expansion glass cavity measuring 0.5 meters in perimeter. Its triangular geometry is optimized 
to maximize the interference path length and enhance rotational sensitivity. The setup includes, 
high-precision temperature sensors with ±0.01°C accuracy to measure temperature variations, 
high-resolution sensors to detect path length deviations. Digital Encoders for capturing error 
signals and wide-range voltage sensors to monitor the control voltage. 

The control system employs a digital PID controller with a high sampling rate, configured 
with a proportional gain of 1.5, an integral gain of 0.8, and a derivative gain of 0.2 to adjust the 
control voltage dynamically. Data logging is handled by a high-speed data logger with a 10 
kHz sampling rate, featuring internal storage for robust data logging and backup. The computer 
system used includes an Intel Core i7 processor, 16 GB of RAM, and a 1 TB SSD, ensuring 
efficient processing and storage capabilities. A programmable thermal chamber, capable of 
simulating temperatures ranging from -10°C to 50°C with ±0.1°C accuracy, is used to replicate 
real-world thermal conditions. 

The Random Forest algorithm is implemented in Python and embedded in the control 
software. It is trained using an NVIDIA GPU to enhance computational efficiency. The setup 
also includes a graphical user interface (GUI) for real-time monitoring [8] and control. 
4.2. Data Acquisition 

Figure 1 illustrates the comprehensive experimental setup used for optimizing path length 
control in RLGs. The RLG system is housed within an environmental chamber, which 
simulates various thermal conditions. The setup includes temperature sensors, analog and 
digital encoders, a PID controller, and controlled voltage mechanisms to monitor and adjust 
the RLG’s path length. 
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Figure 1: Schematic of the experimental setup for Path Length Control. 

Data from the sensors and control system are continuously fed into a Random Forest 
machine learning model, which predicts the optimal control voltage required to counteract 
thermal fluctuations. All collected data is logged and stored in a structured database within the 
data acquisition system, ensuring accurate and comprehensive data management for analysis 
and model training. This setup enables precise control and robust performance evaluation of 
the RLG system under varying thermal conditions. 
4.3. Deployment of Model 

Deploying the machine learning model involves several critical steps to ensure its 
integration with the RLG system and its effective performance in real-time applications. The 
steps in deploying the model are as follows: 
4.3.1 Integration with Control System: The trained Random Forest model was integrated into 
the RLG control system for real-time path length management. This involved embedding the 
model within the control software, enabling it to process incoming sensor data (temperature, 
analog error, digital error) and continuously predict the optimal control voltage. The integration 
ensured seamless communication between the model and the hardware, allowing for real-time 
adjustments to the control voltage. This deployment demonstrated significant improvements in 
maintaining path length stability under varying thermal conditions, validating the model's 
effectiveness in enhancing the precision and reliability of RLG performance. 
4.3.2 Optimization for Real-Time Use: The Random Forest model was optimized for real-time 
use in the RLG system to ensure low-latency predictions and efficient resource management. 
Techniques such as model simplification and code optimization were implemented to reduce 
processing time. High-performance computing resources were utilized to handle real-time data 
influx, ensuring the model's predictions were delivered with minimal delay. This optimization 
enabled the control system to dynamically adjust the control voltage in response to thermal 
fluctuations, thereby maintaining consistent path length and significantly improving the 
system's overall accuracy and reliability. 
4.3.3 Testing and Validation: The Random Forest model underwent rigorous testing and 
validation to ensure its effectiveness in the RLG system. Extensive closed-loop tests were 
conducted, where the model's predictions directly influenced the control actions. The model's 
performance was evaluated under various operational scenarios, including extreme thermal 
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conditions, to validate its robustness. Metrics such as Mean Squared Error (MSE) and R-
squared (R²) confirmed the model's high accuracy. The successful testing and validation 
demonstrated the model's capability to maintain precise path length control, enhancing the 
reliability and performance of the RLG system in real-world applications. 
4.3.4 Monitoring and Maintenance: After deployment, the Random Forest model was 
continuously monitored to ensure sustained performance in the RLG system. Real-time 
monitoring tools tracked prediction accuracy, control efficiency, and system stability. 
Anomalies and deviations were promptly identified and addressed. Regular updates were made 
to the model using newly collected data to maintain its accuracy and adaptability. This 
proactive maintenance strategy ensured that the model consistently provided optimal control 
voltage predictions, thereby enhancing the long-term reliability and precision of the RLG 
system under varying thermal conditions. 
4.3.5 User Interface: The deployed Random Forest model was integrated with a user-friendly 
interface to facilitate real-time monitoring and control by operators. The interface displayed 
the model's predictions, control actions, and system performance metrics through intuitive 
dashboards. Operators could easily visualize temperature, analog error, digital error, and 
control voltage data, enabling informed decision-making. The interface also included alert 
systems to notify users of any anomalies or performance issues. This user-friendly software 
ensured that operators could effectively manage the RLG system, leveraging the model’s 
predictive capabilities to maintain optimal path length control. 
  
5.  EXPERIMENTAL RESULTS 
5.1 Metrics chosen for model performance 

The performance of the Random Forest model was rigorously evaluated using three key 
metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²). 
The experimental setup involved testing the model on a separate validation dataset to ensure a 
robust evaluation of its predictive capabilities. 
5.1.1 Mean Absolute Error (MAE): The MAE measures the average magnitude of errors 
between predicted and actual control voltages: 

𝑀𝐴𝐸 = 4
5
∑ |𝑦6 −5
674 𝑦AY|                                                                        (13) 

The experiment revealed that the model achieved an MAE of 0.002 V, indicating that the 
average deviation between the predicted control voltages and the actual voltages was only 
0.002 volts. This low MAE demonstrates the model’s high accuracy in predicting the necessary 
control voltages to maintain the desired path length in RLGs, even in the presence of thermal 
fluctuations. The small average error signifies that the model reliably manages the delicate 
adjustments required to counteract the effects of thermal changes on the RLG system, ensuring 
precise path length control. 
5.1.2 Root Mean Squared Error (RMSE): The RMSE evaluates the square root of the average 
squared differences between predicted and actual control voltages: 

𝑅𝑀𝑆𝐸 = =4
5
∑ (𝑦6 − 𝑦AY)95
674                                                                      (14) 

In our experiments, the Random Forest model achieved an RMSE of 0.004 V. This metric 
is particularly insightful as it penalizes larger errors more than smaller ones, providing a clear 
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indication of the model’s precision. The low RMSE value suggests that the model's predictions 
are very close to the actual control voltages required for optimal path length control. This 
precision is crucial for maintaining the stability of the RLG system, as it ensures that the control 
voltage adjustments made in response to thermal fluctuations are both accurate and effective 
in minimizing path length deviations. 
5.1.3 R-squared (R²): The R² value indicates how well the model explains the variance in the 
control voltage data: 

𝑅9 = 1 − ∑ (D$(D%E )&
'
$(#

∑ (D$(D%G )&'
$(#

                                                                           (15) 

The Random Forest model achieved an R² value of 0.999 in the experiments, indicating 
that 99.9% of the variance in the control voltage was accurately explained by the model. This 
exceptionally high R² value confirms that the model has effectively captured the underlying 
patterns and relationships between the input features (such as temperature, analog error, and 
digital error) and the control voltage. The high explanatory power of the model underscores its 
reliability and effectiveness in predicting the optimal control voltages necessary for 
maintaining stable path length control in RLGs under varying thermal conditions. This strong 
performance demonstrates the model's potential for real-world applications where precise 
control is essential. 
5.2 Analysis of Results 

Figure 2 compares the performance of various machine learning algorithms, providing 
valuable insights into the effectiveness of the Random Forest model in predicting the optimal 
control voltage for maintaining path length in RLGs. The evaluation metrics, Mean Squared 
Error (MSE) and R-squared (R²), were used to assess each model's performance. 

 
Figure 2: Model Evaluation: Mean Squared Error (MSE) and R-squared (R²) for Various 

Algorithms 
The Random Forest model achieved a notably low MSE and a high R² value, indicating its 

superior accuracy and reliability compared to other algorithms such as K-Nearest Neighbors 
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(KNN), Decision Tree, Gradient Boosting, XGBoost, Elastic Net, and Lasso. The low MSE 
value suggests that the Random Forest model had minimal error in predicting control voltages, 
which is crucial for maintaining precise path length control in RLGs. The high R² value 
demonstrates that the model could explain a significant portion of the variance in the control 
voltage data, highlighting its effectiveness in capturing the underlying patterns and 
relationships. 

In contrast, models like KNN and Decision Tree showed higher MSE values and lower R² 
values, indicating less accuracy and reliability in their predictions. Although XGBoost had a 
high R², it exhibited a spike in MSE, suggesting potential overfitting or sensitivity to certain 
data points. 

The analysis confirms that the Random Forest model is well-suited for this application, 
providing robust and accurate control voltage predictions. This capability is essential for 
dynamically adjusting to thermal fluctuations, ensuring stable path length control and 
enhancing the overall performance of RLG systems. 
5.3 Feature Importance Analysis 

Feature importance analysis was conducted to identify the most influential variables 
affecting the control voltage predictions in the Random Forest model [11]. This analysis helps 
in understanding which features contribute the most to the model's accuracy, thereby providing 
insights into the underlying physical processes influencing path length control in RLGs. 

The Random Forest model's [11] inherent ability to measure feature importance was 
leveraged to rank the predictor variables. The key features included temperature, analog error, 
digital error, and control voltage. The analysis revealed the following insights: 
5.3.1 Temperature: Temperature emerged as the most significant feature, with the highest 
importance score. This finding aligns with the understanding that thermal fluctuations directly 
impact the RLG cavity path length, thereby influencing the control voltage required to maintain 
optimal performance. The model's emphasis on temperature [3] highlights its critical role in 
the path length control [4] mechanism. 
5.3.2 Analog Error: The analog error signal was the second most important feature. This signal 
provides real-time feedback on deviations from the desired path length, allowing the model to 
make precise adjustments to the control voltage. The high importance score for analog error 
underscores its value in the feedback loop for maintaining path length stability. 
5.3.3 Digital Error: Digital error also played a significant role, albeit to a lesser extent than 
temperature and analog error. This feature helps in fine-tuning the control system by providing 
additional error correction data. Its importance indicates that incorporating multiple forms of 
error feedback enhances the model's prediction accuracy. 
5.3.4 Control Voltage: While control voltage was the target variable, its interaction with other 
features was crucial for accurate predictions. The model effectively captured these interactions, 
as reflected in the importance scores of the input features. 

The feature importance analysis confirmed that the model prioritizes the most relevant 
variables for path length control in RLGs. The high importance scores for temperature and 
error signals validate the model's focus on critical factors affecting path length stability. These 
insights guide further improvements in data collection and feature engineering, ensuring that 
the most impactful variables are accurately measured and incorporated into the model. 
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In conclusion, the feature importance analysis provided a clear understanding of the key 
factors influencing control voltage predictions. By highlighting the significance of temperature 
and error signals, the analysis reinforced the model's robustness and its potential for enhancing 
the precision and reliability of path length control in RLGs. 
6. DISCUSSION 

The conducted research successfully demonstrated the application of machine learning, 
specifically the Random Forest algorithm, in predicting the optimal control voltage for 
maintaining the path length in RLGs. The experiments and subsequent analyses provided 
valuable insights into the model’s performance and its practical implications. 

The Random Forest model achieved outstanding performance metrics, with a Mean 
Absolute Error (MAE) of 0.002 V, a Root Mean Squared Error (RMSE) of 0.004 V, and an R-
squared (R²) value of 0.999. These results indicate that the model makes high accurate 
predictions, crucial for maintaining precise path length control in RLGs. The low MAE and 
RMSE values reflect the model’s capability to produce minimal prediction errors, while the 
high R² value confirms its effectiveness in explaining the variance in the control voltage data. 

The integration of the Random Forest model into the RLG control system proved to be 
highly effective in real-world applications. The model’s ability to predict control voltages 
accurately allowed for real-time adjustments to counteract thermal fluctuations, ensuring stable 
path length control. This capability is essential for enhancing the performance and reliability 
of RLG systems, particularly in applications requiring high precision, such as inertial 
navigation [9] and geophysical measurements. 

The feature importance analysis provided further insights into the factors most critical for 
accurate control voltage predictions. Temperature emerged as the most significant predictor, 
highlighting the direct impact of thermal variations on the RLG’s path length. Analog and 
digital error signals were also identified as key features, underscoring the importance of real-
time feedback in maintaining path length stability. 

Compared to traditional control methods, such as pre-programmed algorithms and manual 
adjustments, the machine learning approach demonstrated superior adaptability and precision. 
Traditional methods often struggle with dynamic thermal variations, leading to suboptimal 
performance. In contrast, the Random Forest model dynamically adjusted to these variations, 
significantly improving control accuracy and system stability. 

Despite the promising results, there are areas for further improvement. The model’s 
performance can be enhanced by incorporating more advanced ensemble methods, such as 
Gradient Boosting Machines (GBM) or Extreme Gradient Boosting (XGBoost), which may 
offer even higher accuracy. Additionally, expanding the dataset to include a broader range of 
operational conditions could improve the model’s robustness and generalization capabilities. 

Future research could also explore the integration of other sensor technologies to provide 
more comprehensive data inputs, further enhancing the model’s predictive power. Investigating 
the applicability of deep learning techniques, such as neural networks, might also yield 
significant advancements in control voltage prediction accuracy. 
7. CONCLUSION 

This research has successfully demonstrated the application of the Random Forest machine 
learning algorithm [11] in predicting the optimal control voltage for maintaining path length in 
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RLGs. The conducted experiments and thorough analysis provided compelling evidence of the 
model’s efficacy and practical benefits. The Random Forest model exhibited remarkable 
performance metrics, achieving a Mean Absolute Error (MAE) of 0.002 V, a Root Mean 
Squared Error (RMSE) of 0.004 V, and an R-squared (R²) value of 0.999. These results confirm 
the model’s capability to produce highly accurate control voltage predictions, essential for 
precise path length management in RLGs. The low error rates and high explanatory power 
underline the model’s robustness and reliability in real-world applications. 

The practical deployment of the model within the RLG control system highlighted its real-
time adaptability and effectiveness in mitigating thermal fluctuations. The ability to maintain 
stable path length control under varying conditions marks a significant improvement over 
traditional control methods, which often fail to dynamically adjust to such variations. 

Feature importance analysis further validated the model’s focus on critical predictors, with 
temperature and error signals emerging as the most influential factors. This insight not only 
reinforces the model’s reliability but also provides a deeper understanding of the key variables 
impacting RLG performance. 

Compared to conventional approaches, the machine learning-based method demonstrated 
superior precision and adaptability, addressing the limitations of pre-programmed algorithms 
and manual adjustments. This advancement has significant implications for applications 
requiring high precision, such as inertial navigation [9] and geophysical measurements. 

Future research directions include exploring advanced ensemble methods, expanding the 
dataset for greater robustness, and integrating additional sensor technologies. Investigating 
deep learning techniques may also offer further improvements in predictive accuracy and 
system control. 

In conclusion, this study has established that machine learning, particularly the Random 
Forest algorithm significantly enhance the precision and reliability of path length control in 
RLGs. By providing a robust, adaptive solution, this research contributes to advancements in 
high-precision sensor systems, paving the way for further innovations and practical 
applications in various fields reliant on RLG technology. 
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