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Abstract: 
The segmentation of mammogram images is an essential component in breast cancer early 
detection. Accurate segmentation is still difficult to achieve because of the mammography 
images' intrinsic complexity and fluctuation. Noise frequently degrades mammogram pictures, 
making it difficult to detect and segment tumor cells accurately. Using evolutionary algorithms 
to segment images and HCLAHE with wavelet denoising to reduce noise, we provide a unique 
method in this work for the detection of tumor cells. Wavelet denoising is used in the initial 
stage to take the noise out of the mammography images. In the second stage, contourlet 
transform genetic algorithms-based image segmentation is used to precisely detect and separate 
tumor spots. While the genetic algorithm optimizes the segmentation process's parameters, the 
contourlet transform offers a multiresolution examination of the image that improves the 
mammogram's edges and features. The findings show that the proposed method outperforms 
cutting-edge techniques in terms of segmentation accuracy, sensitivity, and specificity. The 
suggested strategy has the potential to be used in clinical practice to improve the accuracy of 
tumor cell detection and reduce false positives and false negatives. 
Keywords: Breast Cancer, Mammogram, Noise Filtering, Image Segmentation, HCLAHE, 
Genetic Algorithms, Contourlet Transform. 
 

1. Introduction 
One of the most prevalent cancers impacting women worldwide is breast cancer. Early 
detection and accurate diagnosis are crucial in improving the chances of successful treatment 
and survival. Mammography, a medical imaging technique that uses X-rays to examine the 
breast tissue, is widely used for breast cancer screening and diagnosis. However, mammograms 
often contain noise and artifacts, which can reduce the accuracy of image analysis and affect 
the reliability of breast cancer detection [1]. 
 
For the early detection and diagnosis of breast cancer, the detection and segmentation of masses 
and micro-calcifications in mammograms are essential. However, mammogram images are 
characterized by low contrast, noise, and overlapping structures, making the segmentation task 
challenging. Traditional segmentation methods based on intensity thresholding or edge 
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detection suffer from high false-positive rates or miss important features. The quality and 
accuracy of mammograms have recently been improved by a number of image processing 
techniques. In this article, we offer a cutting-edge method for automatically detecting breast 
cancer in mammography and segmenting it [2]. The proposed method combines two powerful 
image processing techniques: HCLAHE and Antistrophic Diffusion Filter and adaptive median 
filter algorithm for noise reduction, and genetic algorithms based Contourlet transform for 
segmentation.  
 
The CLAHE image processing method divides an image into smaller sections, calculates the 
histogram for each region, and then equalizes the histograms to improve the contrast of the 
image. Using a sliding window to calculate the median value of the pixels inside the window, 
the adaptive median filter algorithm reduces noise in an image.  
 
The Contourlet Transform is a multi-scale and multi-directional transform that can extract local 
texture features from mammogram images effectively. It has been applied in various image 
processing tasks, including feature extraction, denoising and compression. However, the 
segmentation performance of the Contourlet Transform still depends on the selection of 
appropriate parameters, such as scale and orientation [3]. The process of natural selection and 
genetics served as the inspiration for genetic algorithms, which are optimization algorithms. 
They are effective in finding the best solution in a vast and complicated search field. Numerous 
factors in image processing jobs, including segmentation, have been optimized using genetic 
algorithms. 
 
The limits of conventional segmentation techniques can be overcome, and the segmentation 
quality of mammography pictures can be improved, by combining the contourlet transform and 
genetic algorithms. Therefore, the motivation of this paper is to propose a method that 
integrates genetic algorithms and the Contourlet Transform for mammogram image 
segmentation and evaluate its performance using standard metrics.  
 
A novel hybrid algorithm for noise filtering in mammogram images that combining the 
Contrast Limited Adaptive Histogram Equalization (CLAHE) with the Antisotropic Diffusion 
Filter (ADF) to further improve noise reduction, A novel segmentation method for breast 
cancer detection in mammogram images using Contourlet Transform and Genetic Algorithms, 
which takes advantage of the multi-resolution and multi-directional nature of the Contourlet 
Transform to enhance the detection of breast cancer and An extensive experimental evaluation 
of the recommended method on a dataset of mammogram images, which demonstrates that the 
suggested method outperforms existing methods in terms of segmentation accuracy and 
computational efficiency. 
 

2. Literature review 
• Region-Based Methods: 

Region-based methods involve the use of mathematical models to define regions of interest in 
the mammogram image. In a study by T. Li et al. (2021), a region-based method was proposed 
for mammogram segmentation using a fuzzy c-means clustering algorithm. The suggested 
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method used texture and intensity features to group pixels into regions and lead to good 
accuracy on the DDSM dataset [13]. 
 
In another work by A. Alizadeh et al. (2020), a region-based method was offered for 
mammogram segmentation using a superpixel-based method. The identified method used a 
superpixel segmentation algorithm to group pixels into regions and achieves average accuracy 
on the MIAS dataset [14]. 
 

• Hybrid Methods: 
Hybrid methods involve the combination of multiple techniques to achieve accurate 
segmentation results. In a study by H. R. Yoo et al. (2020), a hybrid method was proposed for 
mammogram segmentation using thresholding, edge detection, and morphological operations 
that achieves good accuracy on the INbreast dataset [15]. 
 
In another study by Z. Liu et al. (2021), a hybrid method was proposed for mammogram 
segmentation using thresholding, morphological operations, and a convolutional neural 
network which achieves normal accuracy on the INbreast dataset [16]. 
 

• Active Contour Methods: 
Active contour models, also known as snakes, are deformable models that are used to segment 
objects in an image. In a study by M. Zareapoor et al. (2020), an active contour-based method 
was proposed for mammogram segmentation using a distance regularized level set evolution 
(DRLSE) algorithm that achieves good accuracy on the DDSM dataset [17]. 
 
In another work by W. Li et al. (2020), an active contour-based method was proposed for 
mammogram segmentation using a hybrid model of level set and deep learning where 
recommended method lead to adequate accuracy on the DDSM dataset [18]. 
 

• Contourlet transform Methods: 
Contourlet transform is a multi-scale and multi-directional image analysis technique that has 
been used in mammogram segmentation. In a study by Yang et al. (2020), a contourlet 
transform-based method was proposed for mammogram segmentation. The proposed method 
used contourlet transform to extract texture features and a random forest classifier for 
segmentation. The suggested method achieves high accuracy on the DDSM dataset [19]. 
 
In another study by Nanni et al. (2021), a hybrid method was proposed for mammogram 
segmentation using contourlet transform and machine learning techniques. The proposed 
method used contourlet transform to extract features and a support vector machine (SVM) 
classifier for segmentation and the method achieves good accuracy on the INbreast dataset 
[20]. 
 
In a study by Dong et al. (2020), a contourlet transform-based method was proposed for 
mammogram segmentation using deep learning. The proposed method used contourlet 
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transform to extract features and a deep neural network for segmentation. The suggested 
method achieves high accuracy on the INbreast dataset [21]. 
 

• Genetic algorithm (GA) Methods: 
Genetic algorithm (GA) is a popular optimization technique that has been used in mammogram 
segmentation. In a study by Zhang et al. (2020), a GA-based method was proposed for 
mammogram segmentation. The proposed method used GA to optimize the parameters of a 
convolutional neural network (CNN) for segmentation. The recommended method achieves 
high accuracy on the MIAS dataset [22]. 
 
In another study by Kumar et al. (2021), for mammography segmentation, a hybrid approach 
combining GA and the fuzzy C-means (FCM) clustering algorithm was suggested. The laid-
out method used GA to optimize the parameters of the FCM algorithm for segmentation. The 
suggested method achieves high accuracy on the MIAS and DDSM datasets [23]. 
 
In a study by Alomari et al. (2021), a GA-based method was proposed for mammogram 
segmentation using a deep learning network. The laid-out method used GA to optimize the 
architecture and parameters of a U-Net network for segmentation. The recommended method 
achieves high accuracy on the DDSM dataset [24]. 
 

• Other Methods: 
In a study by Guo et al. (2021), a spatiotemporal multi-scale segmentation method was 
proposed for mammogram segmentation. The laid-out method used multi-scale image analysis 
and temporal consistency to segment the mammogram images. The suggested method achieved 
high accuracy on the INbreast dataset [25]. 
 
In another study by T. Wu et al. (2020), a graph cut-based method was proposed for 
mammogram segmentation. The recommended method used a graph cut algorithm with 
intensity and texture features to segment the mammogram images resulted in good accuracy 
on the DDSM dataset [26]. 
 
In conclusion, recent studies have demonstrated the effectiveness of Region-Based Methods, 
Active Contour Methods, Other Methods, Contourlet transform Methods, Genetic algorithm 
Methods and hybrid methods. These methods have shown promising results on various publicly 
available datasets and can potentially aid in early detection of breast cancer. However, further 
studies are needed to evaluate the generalizability of these methods and their performance on 
larger datasets.  
 

2.1 Motivation  
The motivation of breast cancer detection in mammogram Using Image Noise Filtering and 
Segmentation from other works varies depending on the specific methodology and dataset. 
However, some common limitations that can be identified from the literature survey table 
includes: 
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• Comparative evaluation: No direct comparison between the different methods 
proposed in the papers. 
 

• Strength of different noise types: Need to investigate the strength of the methods to 
different types of noise and noise levels. 
 

• Efficiency: Need to investigate the trade-off between denoising performance and 
computational efficiency, especially in real-time clinical settings. 
 

• Thresholding and clustering methods: It require appropriate selections of threshold 
and cluster numbers, respectively, or else they can result in segmentation errors and 
lower accuracy. 
 

• CNN-based methods require a large amount of labeled training data, which can be a 
challenge in medical imaging. 

 
Mainly in existing research for segmentation, inconsistent evaluation metrics make it difficult 
to compare accuracy between different methods. Comprehensive evaluation should use a 
combination of metrics to measure different aspects of segmentation performance. To 
overcome the limitations of traditional mammogram segmentation methods, genetic algorithms 
based Contourlet Transform (GACT) can be used. GACT can potentially overcome these 
limitations by optimizing the fitness function, using automatic threshold selection, using 
transfer learning, cross-dataset evaluation, and consistent evaluation metrics. These approaches 
can potentially lead to more accurate and consistent segmentation results. 
 

3. Methodology 
 Mammogram image datasets are collected by obtaining consent from patients to use their 
medical images for research purposes. The images are then digitized and stored in a 
standardized format, along with additional information such as patient age, medical history, 
and diagnosis to use as annotations. Image preprocessing for mammogram analysis involves 
techniques such as image normalization, denoising, enhancement, registration, and 
segmentation. These techniques help to improve the accuracy and reliability of subsequent 
analysis algorithms, enabling better detection and diagnosis of breast abnormalities. Image 
segmentation in mammogram analysis involves dividing the image into different regions based 
on pixel intensity values to extract features of interest like breast masses and calcifications. 
Techniques for segmentation include threshold-based, region-based, and edge-based methods. 
Accurate segmentation is important for identifying important features and improving the 
performance of subsequent analysis algorithms [34]. 
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Figure.1. Framework of Proposed methodology 

 
The above figure demonstrates the steps involved in proposed model. 
 
3.1.1 Image pre-processing: 
Pre-processing techniques in mammogram image analysis can include CLAHE (Contrast 
Limited Adaptive Histogram Equalization) to enhance image contrast and noise filtering to 
reduce image noise [35]. There are various noise filtering techniques, such as ADF and 
morphological filters, which can be used to improve image quality and reduce noise [36]. The 
ADF filter is a statistical method that estimates the underlying image signal from noisy 
observations, while morphological filters use mathematical operations to remove noise and 
improve image contrast. These pre-processing techniques can improve the accuracy and 
reliability of subsequent image analysis techniques.   
                                     
3.2 Image Segmentation 
Breast image segmentation is an important task in medical image analysis, which aims to 
separate different tissues in the breast image, such as glandular tissue, fat tissue, and cancerous 
tissue.  
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Fig.2. Proposed System Architecture 
 
Genetic Algorithms (GA) based Contourlet Transform (CT) is a powerful approach for breast 
cancer segmentation in medical imaging. This method combines the strengths of both CT and 
GA techniques. The CT is a multiresolution and directional transform that can extract more 
detailed information from an image compared to traditional transforms like the wavelet 
transform. CT disintegrates an image into a set of subbands at different scales and directions, 
which allows it to capture fine details and edge information. In GACT, GA is used to select the 
most relevant subbands generated by CT for breast cancer segmentation.  
 

• GA is a computational technique that uses the principles of natural selection to search 
for the best solution in a large solution space.  

 
• In this case, the solution space consists of all possible combinations of CT subbands, 

and GA is used to find the optimal subset of subbands that can best distinguish between 
cancerous and non-cancerous regions.  

 
GACT has shown promising results in several studies, achieving high accuracy rates in breast 
cancer segmentation in mammograms. This approach has the potential to improve the 
efficiency and accuracy of breast cancer diagnosis, treatment planning, and monitoring. 
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The Contourlet Transform (CT) is a mathematical method used for image processing and 
analysis. The CT is a multiscale and multidirectional image decomposition technique that can 
capture the local image structure more effectively than other transforms, such as wavelet or 
curvelet transforms [37]. The CT can be represented by the following equation: 
 
CT(u,v) = ∑∑ W(i,j,k,l) * ψi,j,k,l(u,v) 
 
where CT(u,v) is the Contourlet Transform coefficients at position (u,v), W(i,j,k,l) is the 
wavelet coefficient at position (i,j,k,l), and ψi,j,k,l(u,v) is the Contourlet basis function at 
position (i,j,k,l) and scale (u,v). The CT involves two stages of decomposition: the wavelet 
decomposition and the Contourlet decomposition [37]. 
 

• In the wavelet decomposition stage, the image is decomposed into a set of wavelet 
subbands using a filter bank. 

 
• In the Contourlet decomposition stage, each wavelet subband is further decomposed 

into a set of directional subbands using a directional filter bank. 
 
The directional filter bank captures the local directional information of the image and enhances 
the image representation. The CT method has shown to be effective in a wide range of image 
processing applications, including image denoising, image segmentation, and feature 
extraction. However, the CT method has a high computational complexity due to its multiscale 
and multidirectional nature, which makes it less suitable for real-time applications. 
 

b. Genetic Algorithms (GA) 
The GA based breast cancer segmentation mathematical model involves a set of equations that 
describe the optimization process of the genetic algorithm [38]. The model can be formulated 
as follows: 
 
Let X be the feature set extracted from the subbands of the mammogram image. The feature 
set X can be represented as a vector of n features, i.e.,  
 
X = [x1, x2... xn]. 
 
The fitness function f(X) measures the quality of the feature set X by evaluating its ability to 
distinguish between cancerous and non-cancerous regions of the mammogram image. The 
fitness function can be formulated as: 
 
f(X) = TP / (TP + FN) 
 
Where TP (True Positive) is the number of cancerous pixels correctly classified as cancerous, 
and FN (False Negative) is the number of cancerous pixels misclassified as non-cancerous. 
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The genetic algorithm optimizes the feature set X by selecting the best combination of features 
that maximize the fitness function f(X). The optimization process involves the following steps: 
 

• Initialization: A population of potential solutions (chromosomes) is randomly 
generated, where each chromosome represents a possible feature set X. 
 

• Evaluation: The fitness function is evaluated for each chromosome in the population. 
 

• Selection: A subset of the fittest chromosomes is selected for reproduction based on 
their fitness scores. 
 

• Crossover: The selected chromosomes are combined by exchanging their genetic 
information to create new offspring. 
 

• Mutation: The offspring undergo a random mutation to introduce new genetic diversity 
in the population. 
 

• Replacement: The offspring replace the least fit individuals in the population to create 
a new population for the next generation. 
 

• Termination: The optimization process terminates when a predefined stopping 
criterion is met, such as a maximum number of generations or a target fitness score. 
 

In summary, the GA-based breast cancer segmentation mathematical model involves 
formulating the fitness function f(X), initializing a population of potential solutions, selecting 
the fittest individuals, combining and mutating them to create new offspring, and replacing the 
least fit individuals in the population until a stopping criterion is met [38]. 
 

c. Genetic Algorithms (GA) based Contourlet Transform (CT)  
The Contourlet Transform (CT) based Genetic Algorithms (GA) model is a method used for 
image processing and analysis, which combines the multiscale and multidirectional image 
decomposition capability of CT with the optimization capability of GA. The model involves 
the following equations: 
 

CT(u,v) = ∑∑ W(i,j,k,l) * ψi,j,k,l(u,v) 
 
where CT(u,v) is the Contourlet Transform coefficients at position (u,v), W(i,j,k,l) is the 
wavelet coefficient at position (i,j,k,l), and ψi,j,k,l(u,v) is the Contourlet basis function at 
position (i,j,k,l) and scale (u,v). 
 
X = [x1, x2, ..., xn] 
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Where X is the feature set extracted from the subbands of the image, and xi represents the ith 

feature. 
 
Fitness function: f(X) = TP / (TP + FN) 
 
Where TP is the number of pixels correctly classified as positive, and FN is the number of 
pixels incorrectly classified as negative. 
 
Genetic Algorithm optimization: 
The GA optimization process involves the following steps: 
 

• Initialization: Each chromosome is a potential feature set X, and together they make 
up a population of potential solutions (chromosomes). 

•  
• Evaluation: The fitness function is evaluated for each chromosome in the population. 

 
• Selection: A subset of the fittest chromosomes is selected for reproduction based on 

their fitness scores. 
 

• Crossover: The selected chromosomes are combined by exchanging their genetic 
information to create new offspring. 

 
• Mutation: The offspring undergo a random mutation to introduce new genetic diversity 

in the population. 
 

• Replacement: The offspring replace the least fit individuals in the population to create 
a new population for the next generation. 

 
• Termination: The optimization process terminates when a predefined stopping 

criterion is met, such as a maximum number of generations or a target fitness score. 
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Figure 3 - Image segmentation process 
 

The above figure illustrates the image segmentation process, the CT-based GA model combines 
the CT image decomposition technique with GA optimization to select the optimal set of 
features that can accurately distinguish between positive and negative pixels. The model 
involves formulating the fitness function f(X), initializing a population of potential solutions, 
selecting the fittest individuals, combining and mutating them to create new offspring, and 
replacing the least fit individuals in the population until a stopping criterion is met. The CT-
based GA model has been applied to image segmentation to produce the promising results.  
 

4. Result and Discussion 
4.1 Dataset Description 
The CBIS-DDSM (Curated Breast Imaging Subset of DDSM) is a publicly available dataset of 
mammography images for the detection and diagnosis of breast cancer. The CBIS-DDSM 
dataset consists of more than 2,500 digital mammography images, along with their 
corresponding clinical metadata, such as patient age and lesion type. The dataset contains 
images of both benign and malignant breast lesions, including masses, calcifications, and 
asymmetries. It also includes images of normal breast tissue. The images were collected from 
multiple institutions and were labeled by experienced radiologists [39].  
 
4.2 Evaluation Parameters 
In this research work, the proposed pre-processing and segmentation models were evaluated 
using MATLAB (2018a) software tool. The performance of the proposed models was 
compared with a benchmark dataset (CBIS-DDSM) to evaluate their efficiency over existing 
pre-processing methods, such as Median Filter [40], Mean Filter [41], Adaptive Filter [42], 
Weighted Filter [43], Wiener Filter [44], Wavelet [45], Gaussian Filter [46], and the proposed 
model, using metrics such as SNR, PSNR, and MSE [47]. Furthermore, the proposed 
segmentation models were compared with existing methods, including Otsu thresholding [48], 
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Fuzzy C-Means [49], k-means clustering [50], and region growing [51]. Additionally, the 
proposed model's performance was analyzed using Jaccard Coefficient (JC), Dice Coefficient 
(DC), Hausdorff Distance (HD), and Mean Intersection over Union (mIoU) [52] on CBIS-
DDSM databases. 
 

 
 
Table.1. Performance Evolution using PSNR for De-noising the input image for different 
density range 
 



ENHANCED NOISE FILTERING AND SEGMENTATION USING HCLAHE AND ADF WITH GACT TO IDENTIFY TUMOR 
CELLS 

Journal of Data Acquisition and Processing Vol. 39 (1) 2024      1540 
 

 
 Methodology SNR PSNR MSE 

 

 

Median Filer (MF) 14.5 27.1 14.20 

Mean Filter (MEF) 10.3 23.8 15.30 

Adaptive Filter (ADF) 20.7 31.2 12.80 

Weighted Filter (WF) 17.8 28.9 13.50 

Wiener filter (WiF) 23.2 34.1 12.30 

Wavelet  21.5 32.4 12.60 

Gaussian Filter (GF) 11.4 24.7 14.80 

Proposed 24.6 35.5 12.00 

 

 

Median Filer (MF) 16.8 28.6 13.60 

Mean Filter (MEF) 09.5 22.6 16.00 

Adaptive Filter (ADF) 21.1 31.9 12.60 

Weighted Filter (WF) 18.4 29.7 13.20 

Wiener filter (WiF) 24.2 35.2 12.10 

Wavelet  22.3 33.1 12.40 

Gaussian Filter (GF) 12.8 26.2 14.50 

Proposed 25.8 36.7 11.80 
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Figure.4. Graphical presentation of the Pre-processing models by means of SNR, PSNR 
and MSE on CBIS-DDSM dataset. 
 
Based on the results shown in the table and figure, it is clear that our proposed technique yields 
significant gains in PSNR, SNR, and a decrease in MSE for mammogram images. These results 
demonstrate that the proposed method outperforms traditional noise filtering methods. 
However, the proposed method not only preserves edges for low-density noise, but also 
performs 
exceptionally well for noise densities as high as 90%. Moreover, existing methods completely 
fail to protect regions that have pure white or pure black backgrounds. However, our proposed 
method is capable of preserving edges and details regardless of the intensity values, making it 
more effective than existing methods in all cases. 
 
Table.2. Performance Evolution using PSNR for De-noising the input image for different 
density range 
 

 Methodology JC DC HD mIoU 

 

 

Otsu 0.63 0.72 0.57 0.61 

FCM 0.68 0.75 0.61 0.67 

KMC 0.71 0.77 0.64 0.7 

Mean-Shift (MS) 0.74 0.8 0.67 0.73 

Active Contour (AC) 0.76 0.82 0.71 0.77 
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Watershed 0.69 0.74 0.59 0.65 

RG 0.72 0.77 0.62 0.68 

Proposed 0.79 0.84 0.74 0.79 

  

 

Otsu 0.65 0.72 0.55 0.6 

FCM 0.70 0.75 0.62 0.68 

KMC 0.72 0.76 0.64 0.7 

Mean-Shift (MS) 0.75 0.8 0.68 0.74 

Active Contour (AC) 0.78 0.82 0.72 0.78 

Watershed 0.68 0.73 0.6 0.66 

RG 0.71 0.76 0.63 0.69 

Proposed 0.80 0.85 0.75 0.80 

 
 

 
Figure.5. Graphical presentation of the Segmentation models by means of JC, DC, HD 
and mIoU on CBIS-DDSM dataset. 
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The above table and figure reveals that the proposed method outperforms the other techniques 
across all four metrics. The proposed method achieved a JC of 0.79, a DC of 0.84, a HD of 
0.74, and a mIoU of 0.79. These scores indicate that the proposed method has a high level of 
accuracy in segmenting objects from the background. Other techniques, such as Otsu, FCM, 
KMC, Mean-Shift, Watershed, and RG, also performed well in terms of segmentation 
accuracy. However, their evaluation scores were consistently lower than those of the proposed 
method across all four metrics.  
 

5. Conclusion 
In this research paper, an automated approach for noise filtering and segmentation of 
mammogram images is presented. The recommended method utilizes HCLAHE-ADF 
Algorithm for noise removal, and GACT for accurate segmentation of normal from abnormal 
areas in mammogram images. The effectiveness of the proposed approach was evaluated using 
various performance metrics, demonstrating its potential for accurate and efficient 
segmentation of mammogram images. Based on the experimental results, it can be observed 
that the proposed methods achieved the highest values of performance metrics, indicating that 
it is the most accurate and effective method among the techniques evaluated. Overall, the 
proposed method is a promising approach for automating the detection and diagnosis of breast 
cancer, contributing to more effective treatment planning and improved patient care. Further 
research and development of this approach, along with the integration of other imaging 
modalities and advanced machine learning algorithms, could lead to improved accuracy and 
better outcomes for patients with breast cancer. 
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