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Abstract 
Agricultural data analysis poses unique challenges due to the multidimensional nature of 
datasets and the complex interactions between various factors affecting crop yield and soil 
health. In this research work, we present a innovative method to focus these confronts by 
combining Modified Linear Discriminant Analysis (MLDA) for feature reduction with 
Modified Random Forest (MRF) for prediction modeling. We utilize a dataset sourced from 
the Indian Chamber of Food and Agriculture (ICFA), focusing on essential soil parameters 
including nitrogen (N), phosphorus (P), potassium (K), and soil pH values. The first phase of 
our methodology involves data preprocessing to ensure data cleanliness and normalization. We 
then employ MLDA, tailored specifically for agricultural data, to identify the most 
discriminative features among the dataset. By incorporating domain-specific knowledge, 
MLDA effectively selects the key variables influencing agricultural outcomes, such as crop 
yield and soil fertility. Subsequently, we utilize MRF, a robust ensemble learning algorithm, to 
build predictive models based on the reduced feature set obtained from MLDA. MRF is chosen 
for its capability to treat higher-dimensional data and provide accurate predictions, crucial for 
decision-making in agriculture. Through extensive experimentation and evaluation, we assess 
the performance of the MLDA-MRF framework in terms of R2 score, MAE, RMSE and 
accuracy. Our results demonstrate the efficacy of the proposed approach in both feature 
reduction and prediction tasks, outperforming traditional methods. This research contributes to 
advancing agricultural data analysis by providing insights into the significant factors 
influencing agricultural parameters. The proposed methodology not only aids in optimizing 
agricultural practices but also facilitates informed decision-making, thereby contributing to 
sustainable agriculture and food security. The integration of MLDA and MRF offers a 
promising avenue for analyzing agricultural datasets, enabling stakeholders to make data-
driven decisions for improved productivity and resource management in the agricultural sector. 
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1. INTRODUCTION 

Agriculture stands as the backbone of a nation's economy, representing not just a sector of 
production but a vital aspect of national sustenance and development [R Rakhee et al 2020]. 
Its importance transcends mere food production, extending to various socioeconomic facets 
including employment generation, rural development, and export earnings. In many countries, 
particularly agrarian economies, agriculture acts as a primary resource of livelihood for a 
substantial section of the populace, remarkably in rural areas. Moreover, it contributes 
substantially to a country's gross domestic product (GDP) [S Han et al 2022] and overseas trade 
gains through agricultural exports. Beyond economic considerations, agriculture plays a crucial 
role in ensuring food security and sovereignty [A Elzamly et al 2015], safeguarding a nation 
against external dependencies on food imports. Additionally, agriculture has environmental 
implications [M Piles et al 2021], as sustainable farming practices are imperative for preserving 
natural resources, mitigating climate change, and maintaining ecological balance [N R Prasad 
et al 2021]. In essence, the significance of agriculture in a country lies not only in its economic 
contributions but also in its profound impacts on social welfare, food security, and 
environmental sustainability [E Khosla et al 2020]. 

The integration of computing technologies in agriculture has become increasingly essential 
to address the evolving challenges faced by the industry [Agarwal S et al 2021]. With a growing 
global population and shrinking arable land, the demand for efficient and sustainable 
agricultural practices has never been greater. Computing technologies offer transformative 
solutions, enabling precision agriculture techniques that optimize resource utilization, enhance 
crop productivity, and minimize environmental impact [Anakha Venugopal et al 2021]. From 
data-driven decision support systems to sensor-based monitoring and automation, computing 
expertise present agriculturalists with concurrent-time perceptions into ground circumstances, 
meteorological conditions, crop health, and pest management [Tamil Selvi et al 2021]. 
Furthermore, advanced computational models and machine learning algorithms empower 
predictive analytics, allowing stakeholders to anticipate and mitigate potential risks while 
maximizing yields [Doi T et al 2020]. Embracing computing technologies in agriculture is not 
just about improving efficiency and productivity; it's about fostering resilience, sustainability, 
and innovation in an industry vital to global food security and economic prosperity [Kevin Tom 
Thomas et al 2020]. 

Data mining [Kamir E W 2020] stands as a crucial component of modern agriculture, 
offering powerful computational tools and techniques to investigate vast and complicated 
datasets in association to abstract significant perceptions and patterns. In the agricultural 
context, data mining involves the exploration and examination of diverse data sources such as 
soil properties, weather conditions, crop characteristics, and historical yield records [Sharma 
N 2019]. By employing various data mining algorithms, agricultural researchers and 
practitioners can uncover hidden relationships and trends within these datasets, thereby 
facilitating informed decision-making and optimizing farming practices [HL Siju P P 2018]. 
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One of the primary roles of data mining in agriculture is to enhance the prediction of crop yield. 
By analyzing historical yield data alongside environmental factors and agronomic practices, 
data mining algorithms can identify key drivers influencing crop performance. For example, 
machine learning algorithms can process large volumes of data to recognize patterns in soil 
composition, climate conditions, and crop genetics that correlate with yield variations [Amisha 
A et al 2022]. Through this analysis, farmers gain insights into the factors that contribute to 
successful harvests, enabling them to make learnt decisions interpreting harvest choice [Geetha 
M C 2018], introducing plans, irrigation, enrichment, and vermin management. Moreover, data 
mining enables the identification of optimal combinations of agronomic practices tailored to 
specific environmental conditions, leading to improved yield predictions and more efficient 
resource management. Furthermore, data mining portrays a critical role in the development of 
extrapolative patterns that forecast crop yields with greater accuracy [M Sarith Divakar et al 
2022]. By integrating machine learning algorithms with agronomic data, predictive models can 
anticipate yield fluctuations and potential challenges, allowing farmers to proactively 
implement mitigation measures. For instance, predictive analytics can forecast the impact of 
weather events, such as droughts or heavy rainfall, on crop yields, enabling farmers to adjust 
their management practices accordingly [Khaki S et al 2021]. Additionally, predictive models 
can assess the efficacy of different crop varieties and management strategies under varying 
environmental conditions, guiding farmers in optimizing their decision-making processes to 
maximize yield potential while minimizing resource inputs and environmental impact. 

The importance of data mining in agriculture extends beyond yield prediction to encompass 
various aspects of farm management and decision support. For example, data mining 
techniques can be applied to optimize supply chain management, market analysis, and financial 
planning in agriculture [Nagy A et al 2021]. By analyzing market trends, consumer preferences, 
and supply-demand dynamics, data mining enables farmers to make informed decisions 
regarding crop selection, pricing strategies, and market positioning. Moreover, data mining 
facilitates the identification of opportunities for diversification and value-added products, 
helping farmers to enhance profitability and competitiveness in the marketplace. Data mining 
serves as a powerful tool in agriculture, offering insights that empower farmers, researchers, 
and policymakers to make data-driven decisions, optimize resource allocation, and ensure food 
security in a rapidly evolving agricultural landscape. By leveraging advanced computational 
techniques to analyze vast and diverse datasets, data mining enables the prediction of crop 
yields with greater accuracy, leading to improved farm management practices, enhanced 
productivity, and sustainability in agriculture [Shahhosseini M et al 2021]. As tools persists to 
enhance, the role of data mining in agriculture is expected to grow, driving innovation and 
transformation across the agricultural value chain. 

2. REVIEW OF RELATED WORKS 

Several studies have underscored the critical role of data mining and machine learning 
techniques in enhancing agricultural productivity and decision-making processes. Welekar et 
al. (2023) emphasized the importance of precise yield estimation for effective agricultural 
planning and proposed a project focused on optimizing crop yield through data mining and 
machine learning algorithms such as k-Nearest Neighbors, Naïve Bayes, and Support Vector 
Machine. Similarly, van Klompenburg et al. (2020) directed a methodical works review to 
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analyze the tender of machine learning algorithms in produce crop forecast, highlighting the 
prevalence of features like temperature, rainfall, and soil type, with Artificial Neural Networks 
emerging as the most utilized algorithm. These studies reflect the growing recognition of data 
mining and machine learning as indispensable tools for crop yield prediction and agricultural 
decision support. Fathima et al. (2020) and Ashwitha et al. (2022) highlighted the significance 
of data mining techniques, particularly K-Nearest Neighbor and ensemble learning algorithms, 
in predicting crop yield and optimizing agricultural practices in regions like India. These 
approaches leverage various parameters such as rainfall, temperature, fertilizers, and soil 
conditions to forecast crop production, aiding farmers in making informed decisions for 
maximizing yields. Moreover, Dey et al. (2024) and Elbasi et al. (2023) demonstrated the 
efficacy of machine learning models, including Support Vector Machine, XGBoost, and 
Artificial Neural Networks, in generating practical recommendations for crop selection and 
nutrient management based on diverse environmental conditions. These studies emphasize the 
importance of utilizing advanced computational techniques to harness agricultural data for 
enhancing productivity and sustainability. Research by Harsanyi et al. (2023) and Ikram et al. 
(2022) showcased the potential of machine learning algorithms, such as Random Forest and 
Smart Crop Selection models, in predicting maize yield and optimizing crop selection decisions 
through real-time data analysis and IoT integration. These studies highlight the role of machine 
learning in addressing challenges related to climate change, soil fertility, and crop selection, 
ultimately contributing to increased agricultural productivity and resilience. Lastly, Su Yang 
et al. (2022) demonstrated the application of machine learning approaches, including random 
forest and quantile regression, in assessing the productivity of conservation agriculture systems 
globally. By employing machine learning techniques, researchers were able to capture the 
spatial variability of crop productivity and provide valuable insights for sustainable agricultural 
practices. Overall, these studies collectively underscore the importance of data mining and 
machine learning in revolutionizing agricultural decision-making and addressing challenges 
associated with food security and sustainability on a global scale. The table 1 gives the 
summary of the recent related works reviewed for this research work. 

Table 1. Review of related works with technique, highlights and result 

S.No 
Author 
Details 

Technique Implemented Highlights and Results 

1 
R. Welekar et 
al. 2023 

Analyzed agricultural conditions 
and scenarios using data mining 
and machine learning techniques 
(e.g., k-Nearest Neighbors, Naïve 
Bayes, Support Vector Machine, 
Linear Regression) 

Aimed to optimize yield and 
production, making the 
agricultural sector more resilient 
to climatic change. 

2 
Thomas van 
Klompenburg 
et al. 2020 

Conducted a Systematic Literature 
Review (SLR) to synthesize 
algorithms and features used in 
crop yield prediction studies. 
Analyzed 50 papers, revealing 
prevalence of temperature, 

Identified Convolutional Neural 
Networks (CNN) as widely used 
deep learning algorithm, 
suggesting its effectiveness in 
crop yield prediction studies. 
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rainfall, soil type features and 
Artificial Neural Networks (ANN) 
as the most utilized algorithm. 

3 
Fathima K et 
al. 2020 

Applied K-Nearest Neighbor 
(KNN) Algorithm for harvest 
yield expectation in selected 
regions of India. 

Demonstrated the popularity of 
Data Mining techniques in 
estimating future crop 
production, particularly in 
regions like Mangalore, 
Kasargod, Hassan, and Kodagu 
in India. 

4 
Ashwitha A et 
al. 2022 

Explored machine learning, data 
mining, and deep learning 
algorithms for accurate decision-
making in crop yield prediction. 
Highlighted the need for efficient 
techniques to process agricultural 
data. 

Emphasized the importance of 
algorithms in predicting suitable 
crops, reducing losses, and 
increasing productivity in 
agriculture. 

5 
Biplob Dey et 
al. 2024 

Evaluated five ML models 
(Support Vector Machine, 
XGBoost, Random Forest, KNN, 
Decision Tree) utilizing Kaggle 
dataset to produce reasonable 
endorsements for selection of 
crops and nutrient fortitude. 

XGBoost demonstrated the 
highest accuracy, indicating its 
potential for producing crop 
suggestions in different 
ecological circumstances. 

6 
Harsanyi E et 
al. 2023 

Assessed four ML algorithms 
(Bagging, Decision Table, 
Random Forest, Artificial Neural 
Network-MLP) in forecasting 
maize harvest centered on 
agricultural and climate data. 

Highlighted ANN-MLP as an 
capable means for forecasting 
maize produce, particularly in 
regions like Central Europe, 
providing insights for sustainable 
crop management. 

7 
Elbasi E et al. 
2023 

Researched the benefits of 
integrating machine learning 
algorithms in modern agriculture, 
emphasizing the potential of these 
algorithms in optimizing crop 
production and reducing waste. 

Proposed a new feature 
combination scheme-enhanced 
algorithm achieving high 
classification accuracy, 
indicating its potential for 
increasing production rates and 
reducing costs. 

8 
Amna Ikram et 
al. 2022 

Proposed Smart Crop Selection 
(SCS) model based on IoT devices 
and ML algorithms for accurate 

Demonstrated the reliability of 
SCS in predicting rainfall and 
selecting crops with high 
accuracy, offering a promising 
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crop selection and yield 
prediction. 

solution for maximizing crop 
yield. 

9 
Sutha K et al. 
2022 

Developed Suggesting and 
Predicting Produce Yield utilizing 
Intelligent Machine Learning 
Algorithm (SMLA) compared to 
traditional algorithms. 

Achieved 95% accuracy with 
SMLA, indicating its efficiency 
in predicting crop yield, which 
can contribute to agricultural 
productivity and economic 
growth. 

10 
Su Yang et al. 
2022 

Presented a machine learning 
approach to assess the production 
of preservation agriculture against 
traditional ploughing, providing 
insights into spatial variability and 
performance. 

Demonstrated the superiority of 
random forest in classification 
and regression, offering a more 
informative approach for 
analyzing agricultural practices 
and enhancing sustainability. 

 
3. RESEARCH GAP AND OBJECTIVES 

While several research studies have delved into the purpose of data mining and machine 
learning techniques in agriculture, there remain notable research gaps and opportunities for 
further exploration. One such gap lies in the need for more comprehensive comparative 
analyses of various machine learning algorithms in predicting crop yield under diverse 
agricultural contexts. While some research, such as those by Klompenburg et al. (2020) and 
Dey et al. (2024), have provided insights into the effectiveness of specific algorithms like 
Artificial Neural Networks and XGBoost, there is still a lack of extensive comparative studies 
across a wider range of machine learning models. Additionally, there is a dearth of research 
focusing on the integration of different machine learning algorithms for more accurate crop 
yield predictions. 

4. TECHNIQUE FOR FEATURE REDUCTION 

In the realm of agricultural data analysis, the complexity arising from the multidimensional 
nature of datasets and the intricate interplay between various factors influencing crop yield 
necessitates sophisticated techniques for effective analysis and prediction. In this context, the 
utilization of Modified Linear Discriminant Analysis (MLDA) offers a promising avenue for 
feature reduction, thereby enhancing the efficiency and accuracy of predictive modeling. 
MLDA, an extension of the classical Linear Discriminant Analysis (LDA), is specifically 
tailored to address the unique challenges posed by agricultural datasets. The dataset sourced 
from the Indian Chamber of Food and Agriculture (ICFA) presents a rich repository of 
information pertaining to crucial soil parameters, including nitrogen (N), phosphorus (P), 
potassium (K), and soil pH values, among others. Prior to crop yield prediction, the application 
of MLDA serves as a pivotal preprocessing step aimed at discerning the most discriminative 
features within the dataset. By effectively reducing the dimensionality of the data while 
preserving its essential discriminatory information, MLDA enables the identification of key 
variables that significantly influence agricultural outcomes such as crop yield and soil fertility. 
This usage of MLDA as a feature reduction technique sets the stage for more accurate and 
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insightful predictive modeling, laying the groundwork for informed decision-making and 
sustainable agricultural practices. 
4.1 Modified Linear Discriminant Analysis (MLDA) 

Linear Discriminant Analysis (LDA) [Nanga S et al 2021] is a classical method widely 
used for dimensionality reduction and feature extraction in various prediction tasks. However, 
its applicability is limited when dealing with datasets having complex distributions or when 
the underlying assumptions of LDA are not satisfied. To address these limitations, Modified 
Linear Discriminant Analysis (MLDA) offers a refined approach, capable of handling non-
Gaussian data distributions and improving prediction accuracy as in Figure 1. At its core, 
MLDA aims to project higher-dimensional data onto a low-dimensional subspace whilst 
maximizing the separability concerning discrete categories or categories within the dataset. 
This is achieved through the computation of scatter matrices, which capture the dispersion of 
data points with respect to class centroids. MLDA modifies the conventional LDA approach 
by introducing adjustments to the scatter matrices, enabling it to handle complex data 
distributions more effectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Modified Linear Discriminant Analysis (MLDA) Algorithm Flow 
The fundamental objective of MLDA is to uncover a conversion solution that increases the 

share of amid-class strew to inside-class distribute. Mathematically, this can be formulated as 
an eigenvalue problem. Let 𝑋 denote the original high-dimensional data matrix with 
dimensions 𝑛 × 𝑝, where 𝑛 characterizes the quantity of samples and 𝑝 signifies the quantity 
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of features. Additionally, let 𝑌 denote the class labels associated with each sample in 𝑋, with 𝑐 
representing the number of distinct classes. The scatter matrices 𝑆ௐ and 𝑆 are defined as 
following equations 1 and 2. 

𝑆ௐ  =  ∑ ∑ (𝑥 − 𝜇)(𝑥 − 𝜇)்
௫∈


ୀଵ   (1) 

𝑆  =  ∑ 𝑛

ୀଵ (𝜇 −  𝜇)(𝜇 −  𝜇)்    (2) 

where 𝑋 represents the collection of illustrations belonging to class 𝑖, 𝜇 represents the mean 
trajectory of class 𝑖, 𝜇 represents the in general mean vector of all models, 𝑛 signifies the 
numeral of sections in class 𝑖. 
The objective is to discover a transformation medium 𝑊 that increases the Fisher criterion, 
defined as the relationship of the determining factor of the amongst-class sprinkle environment 
to the determining factor of the inside-class sprinkle matrix in equation 3 

𝐽(𝑊) =  
∣ௐ ௌಳ ௐ|

∣ௐ ௌೈ ௐ∣
 (3) 

The transformation matrix 𝑊 can be acquired by resolving the generalized eigenvalue 
problematic in equation 4, where 𝑤 represents the eigenvector subsequent to the greatest 
eigenvalue 𝜆. The solution to this eigenvalue problem yields the optimal projection direction, 
which defines the subspace onto which the data will be projected 

𝑆ௐ
ିଵ 𝑆 𝑤 =  𝜆𝑤 (4) 

To generalize MLDA for feature reduction, we aim to select the 𝑘 eigenvectors after the 𝑘 
biggest eigenvalues, where 𝑘 represents the desired dimensionality of the reduced feature 
space. These eigenvectors form the columns of the transformation matrix 𝑊, which plots the 
original higher-dimensional data onto a low-dimensional subspaces. The transformed data 
matrix 𝑋௪ is given by equation 5 

𝑋௪  =  𝑋𝑊  (5) 

The reduced feature space represented by 𝑋௪ retains the most discriminative information 
while reducing the dimensionality of the data, thereby facilitating subsequent prediction tasks. 
The proposed MLDA offers a sophisticated approach to feature reduction, enabling effective 
handling of complex data distributions and improving prediction accuracy in various 
applications. By maximizing the separability between classes through optimized projections, 
MLDA contributes to enhanced performance in prediction tasks, making it a valuable tool in 
data analysis and pattern recognition. Modified Linear Discriminant Analysis (MLDA) extends 
the capabilities of Linear Discriminant Analysis (LDA) by accommodating non-normally 
distributed data and unequal covariance matrices among classes. Unlike LDA, which assumes 
normality and identical covariance matrices, MLDA introduces modifications to the scatter 
matrices to handle skewed distributions and varying covariance structures. By relaxing these 
assumptions, MLDA offers a robust and versatile dimensionality reduction technique suitable 
for real-world datasets with diverse characteristics, making it a valuable tool in pattern 
recognition and machine learning applications. 

5. TECHNIQUE FOR PREDICTION 

For the agricultural data analysis, predicting crop yield accurately is imperative for 
effective decision-making and resource allocation. The Modified Random Forest (MRF) 
technique emerges as a promising solution to address this challenge, particularly within the 
dataset sourced from the Indian Chamber of Food and Agriculture (ICFA). With its adaptability 
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to complex datasets and robust predictive capabilities, MRF stands as a formidable tool for 
crop yield prediction. Random Forest (RF) is a popular combination knowledge procedure 
known for its competence to control higher-dimensional data and mitigate overfitting through 
the construction of multiple decision trees. MRF, an extension of RF, incorporates 
modifications tailored specifically for agricultural datasets, enhancing its performance and 
relevance in predicting crop yield. By harnessing the power of decision trees and aggregating 
their predictions, MRF provides accurate and reliable estimates of crop yield, thereby 
facilitating informed decision-making in agriculture. Within the ICFA dataset, which 
comprises crucial agricultural parameters such as nitrogen, phosphorus, potassium, and soil pH 
values, MRF offers a robust framework for predicting crop yield based on these influential 
factors. Through this introduction, we delve into the application of MRF in agricultural data 
analysis, highlighting its potential to revolutionize crop yield prediction and contribute to 
sustainable agricultural practices in the context of the ICFA dataset. 
5.1 Modified Random Forest (MRF) 
5.1.1 Integration of Feature Importance 

In traditional Random Forest [Prasanth N et al 2023], features are randomly selected at 
each node split to determine the best split. MRF extends this by incorporating feature 
importance measures, such as Gini impurity or information gain, to guide the split selection 
process more effectively. At each node, MRF calculates a modified impurity measure by 
considering both traditional impurity measures and feature importance weights. This 
modification ensures that more discriminative features have a stronger influence on the split 
selection process, leading to more informative decision trees. 
Let 𝐼(𝑡) represent the impurity measure at node 𝑡. Then, the impurity measure for a split on 
feature 𝑗 at node 𝑡 is given by equation 6 

𝐼(𝑡, 𝑗) = ∑ 𝑝௦௦ (𝑡) ⋅ (1 − 𝑝௦௦ (𝑡))௦௦௦   (6) 

where 𝑝௦௦(𝑡) is the proportion of samples in node 𝑡 belonging to a particular class. In MRF, 
we introduce feature importance weights 𝑤 for every feature 𝑗, representing the consequence 

of feature 𝑗 in predicting the target variable. The modified impurity measure is then defined as 
equation 7 

𝐼ெோி   (𝑡, 𝑗) = 𝑤  ⋅ 𝐼(𝑡, 𝑗) (7) 

By incorporating feature importance weights, MRF ensures that features with higher 
importance contribute more to the impurity reduction, leading to more informative splits. 
5.1.2 Aggregating Weighted Prediction 

Unlike Random Forest, where predictions are aggregated by simple averaging or 
majority voting, MRF introduces a weighted aggregation scheme based on individual tree 
performance on a validation set. Each tree's prediction is weighted according to its performance 
on the validation set, with trees that exhibit lower errors receiving higher weights. This 
weighted aggregation approach ensures that more accurate trees contribute more to the final 
prediction, thereby improving overall predictive performance. Let 𝑦

ᇱ௧ symbolize the prediction 

of the i-th sample by the t-th decision tree, and 𝑦
ᇱ represent the final aggregated forecast for 

the i-th section. Additionally, let 𝐸𝑟𝑟௧ denote the error of the t-th tree on the validation set. 
Then, the weighted prediction aggregation is defined as in equation 8 
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𝑦
ᇱ =

∑ ௪ ⋅ ௬
ᇲ 

షభ

∑ ௪ 
షభ

  (8) 

where 𝑇 is the total amount of trees, and 𝑤௧ is the weight transferred to the t-th tree based on 
its validation set error. Trees with lower validation set error receive higher weights in the 
aggregation process. 
5.1.3 Pruning and Early Stopping 

To combat overfitting and enhance generalization, MRF incorporates regularization 
techniques such as pruning and early stopping during the tree-growing process. Pruning 
involves removing nodes or branches that do not significantly contribute to predictive 
performance, while early stopping halts tree growth when further splitting does not lead to 
substantial performance gains on the validation set. By controlling the complexity of individual 
trees, these regularization techniques help strike a balance between bias and variance in the 
ensemble model, leading to improved generalization ability. In MRF, pruning involves 
removing nodes or branches from the decision trees to prevent overfitting and improve 
generalization performance. The pruning process typically involves defining a pruning 
criterion based on which nodes are removed. 

Let 𝑇௧ denote the decision tree before pruning, and 𝑇௧ᇲ
 represent the pruned tree obtained after 

pruning. The pruning criterion may involve metrics such as impurity reduction or information 
gain at each node. Let 𝐼(𝑡) denote the impurity measure at node 𝑡. The pruning process can be 
formalized as in equation 9 

𝑇௧
ᇱ  =  𝑃𝑟𝑢𝑛𝑒(𝑇௧ , 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)  (9) 

where 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 represents the pruning criterion. Early stopping involves halting tree growth 
when further splitting does not lead to substantial gains on the validation set. Let 𝐸𝑟𝑟_𝑡 denote 
the error of the t-th tree on the validation set. The early stopping process can be described as 
following equation 10 

𝑇௧  =  𝐸𝑎𝑟𝑙𝑦𝑆𝑡𝑜𝑝(𝑇௧, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛௦௧ , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  (10) 

where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 represents a threshold value based on which further splitting is halted. 
5.1.4 Tuning Hyper parameters 

MRF introduces additional hyper-parameters compared to Random Forest, as the 
regularization parameter and feature importance weights. Bayesian optimization is used as 
Efficient hyper-parameter tuning technique to optimize these parameters and maximize 
predictive performance on the validation set. 
Let 𝛩 represent the set of hyperparameters, including regularization parameter 𝜆 and feature 
importance weights 𝑤. The hyperparameter tuning procedure targets to discover the optimum 

set of hyperparameters 𝛩∗ that minimizes a predefined loss function 𝐿 on the validation set in 
equation 11. 

𝛩∗  =  𝑎𝑟𝑔 𝑚𝑖𝑛௵  𝐿(𝛩, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛௦௧) (11) 

Bayesian optimization for tuning the Modified Random Forest (MRF) model involves 
iteratively selecting hyper-parameters to minimize the validation set error. Initially, a Gaussian 
process surrogate model is constructed to represent the distribution of the validation set error 
across different hyper-parameter configurations. The Expected Improvement (EI) function is 
then used as the acquisition function to determine which hyper-parameters to estimate next 
established on the replacement model's projections. The optimization process selects hyper-
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parameters that maximize the expected improvement in performance. After evaluating the 
chosen hyper-parameters and obtaining new observations, the substitute model is renewed to 
absorb the new data. This iterative process continues until a stopping criterion is met, ultimately 
finding the finest hyper-parameters for the MRF model to predict crop yield effectively. 

6. IMPLEMENTION AND RESULTS OF THE PROPOSED ALGORITHMS 

The Indian Chamber of Food and Agriculture (ICFA) dataset, sourced from the Kaggle 
repository, provides a comprehensive collection of agricultural data pertinent to India, 
encompassing crucial parameters such as nitrogen (N), phosphorus (P), potassium (K), and soil 
pH levels. These parameters play pivotal roles in determining soil fertility, nutrient availability, 
and overall crop health, thereby exerting significant influence on agricultural productivity and 
yield outcomes along with Dew and Temperature levels.  

 

(A) Crop yield prediction with reference to Mean average temperature 

 

(B) Crop yield prediction with reference to Mean dew point 
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(C) Crop yield prediction with reference to Mean high temperature 

Figure 2. Crop yield prediction results of ICFA dataset using MLDA-MRF Framework 
The implementation of the MLDA+MRF framework for predicting crop yield using the 

Indian Chamber of Food and Agriculture (ICFA) dataset on the Jupiter Notebook of the Google 
Cloud Platform is done. First, the dataset is be imported and preprocessed to ensure cleanliness 
and normalization. Next, MLDA is applied to reduce the feature space by identifying the most 
discriminative variables affecting crop yield. Once the feature reduction is complete, the 
modified random forest (MRF) algorithm is employed for prediction modeling. The 
implementation includes tuning the hyper-parameters of the MRF model using Bayesian 
optimization, which involves iterative calculations to optimize the model's performance. The 
entire process is coded in Python, utilizing libraries such as scikit-learn for MLDA and MRF 
implementation, along with other data processing libraries. The Jupiter Notebook environment 
on the Google Cloud Platform provides a convenient and scalable platform for executing these 
tasks, allowing for efficient experimentation and collaboration. Through this implementation, 
stakeholders in the agricultural sector can leverage advanced data analytics techniques to make 
informed decisions and optimize crop yield, contributing to the sustainable growth of the 
agriculture industry. The Figure 2 illustrates the correlation between Mean Average 
Temperature, Mean Dew Point, and Mean High Temperature with crop yield in pounds. It 
visualizes how changes in these weather variables affect crop productivity, providing insights 
into the relationship between temperature conditions and yield outcomes. By analyzing the 
trends depicted in the figure, stakeholders can better understand the climatic factors influencing 
crop production and make informed decisions to optimize agricultural practices for improved 
yields. 

7. COMPARISION OF ALGORITHM COMPLEXITIES 

The proposed Modified Linear Discriminant Analysis (MLDA) and Modified Random 
Forest (MRF) algorithms exhibit different complexities compared to their traditional 
counterparts, Linear Discriminant Analysis (LDA) and Random Forest (RF), respectively. 
7.1 Algorithm Complexity of MLDA vs LDA 

The computational complexity of LDA primarily be contingent on the quantity of features 
(𝑑) and the number of samples (𝑛). The time complication for computation the covariance 
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matrix and its inverse is approximately 𝑂(𝑑ଶ ∗  𝑛) and 𝑂(𝑑ଷ) respectively. The time 
complexity for computing eigenvectors is approximately 𝑂(𝑑ଷ). Therefore, the overall time 
complexity of LDA is 𝑂(𝑑ଷ +  𝑑ଶ ∗  𝑛). The MLDA introduces modifications to the traditional 
LDA algorithm by incorporating additional selection of feature steps. The complication of 
MLDA depends on the complexity of the feature selection method used. If MLDA employs a 
simple feature selection technique like correlation-based feature selection, the additional 
computational overhead is minimal, and the overall complexity remains similar to LDA. 
However, if MLDA employs more complex feature selection methods like genetic algorithms 
or recursive feature elimination, the complexity could increase significantly, potentially to 
𝑂(𝑑ସ) or higher depending on the method. 
7.2 Algorithm Complexity of MRF vs RF 

In Random Forest, the time complexity for building each tree is 𝑂൫𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑)൯, 

where n is the quantity of samples and d is the total of attributes. Building k trees results in a 
total complexity of 𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑)). Since each tree is built independently, RF can 
be easily parallelized. Modified Random Forest introduces modifications to the traditional RF 
algorithm, primarily in the hyper-parameter tuning phase. The time complexity of MRF is 
dominated by the Bayesian optimization process used for hyper-parameter tuning. Bayesian 
optimization typically involves evaluating the objective function (validation error) iteratively, 
which can be computationally intensive. The complexity of Bayesian optimization be 
contingent on various considerations such as the choice of surrogate model and the number of 
iterations. Overall, the complexity of MRF can be similar to RF in terms of building the forest 
(𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑))), but the additional complexity arises from the hyperparameter 
tuning phase, which could be 𝑂(𝑚 ∗  𝑇), where 𝑚 is the numeral of hyper-parameters and 𝑇 
is the figure of iterations in the optimization process. 

Table 2. Algorithm complexity of native and proposed algorithms 
S.No Algorithm Complexity 

1 LDA 𝑂(𝑑ଷ + 𝑑ଶ ∗  𝑛) 

2 MLDA 𝑂(𝑑ଷ) 𝑡𝑜 𝑂(𝑑ସ) 
3 RF 𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑)) 

4 MRF 𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑))  +  𝑂(𝑚 ∗  𝑇) 
 

As per Table 2, MLDA is generally less complex compared to LDA. MLDA tends to have 
a lower computational burden compared to LDA, especially for larger datasets or high-
dimensional feature spaces. Both MRF and RF have similar complexities for building decision 
trees However, MRF introduces additional complexity in the Bayesian optimization step. 
Despite this additional complexity, MRF might still be comparable or slightly less complex 
than RF depending on the specific values of 𝑚 and 𝑇. 

8. PERFORMANCE COMPARISION AND DISCUSSION 

The evaluation of the proposed MLDA+MRF framework against alternative 
methodologies, including LDA+RF, Ensemble VNN-DNN, SVM, and Naive Bayes, involves 
comprehensive assessment metrics such as R2 score, Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and accuracy. R2 score quantifies the proportion of variance explained 
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by the model, providing insights into its predictive power and goodness-of-fit. Meanwhile, 
MAE measures the common significance of faults amongst anticipated and genuine 
significances, offering a direct assessment of prediction accurateness. RMSE complements 
MAE by penalizing larger prediction errors more heavily, thereby capturing the model's 
performance across the entire dataset. Additionally, accuracy evaluates the model's 
classification performance, particularly relevant for categorical outcomes. By systematically 
comparing these metrics across different methodologies, we gain a nuanced understanding of 
their respective strengths and weaknesses in predicting crop yield based on the ICFA dataset. 
This comprehensive evaluation serves to inform stakeholders and decision-makers in selecting 
the most suitable approach for agricultural data analysis, ensuring optimal resource allocation 
and informed decision-making in agricultural practices. 

Table 3. Performance results of proposed framework with existing techniques 
S.No Methodology R2 Score MAE RMSE Accuracy 

1 MLDA+MRF 0.85 2.7 4.1 92% 
2 LDA+RF 0.78 3.2 4.9 88% 
3 Ensemble VNN-DNN 0.82 2.9 4.5 90% 
4 SVM 0.79 3.1 4.8 89% 
5 Naive Bayes 0.72 3.6 5.2 85% 

 

 
Figure 3. MAE, RMSE and R2 Score Comparison 

The table 3 presents a comprehensive performance evaluation of various methodologies for 
predicting crop yield using the Indian Chamber of Food and Agriculture (ICFA) dataset. Each 
methodology is assessed based on key metrics including R2 Score, Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), and Accuracy. The MLDA+MRF framework 
achieves the highest R2 Score of 0.85, indicating that it explains 85% of the variance in crop 
yield, showcasing its superior ability to capture the underlying relationships in the data. 
Additionally, it demonstrates the lowest MAE and RMSE values of 2.7 and 4.1, respectively, 
implying minimal prediction errors and high precision in estimating crop yield. The framework 
also achieves an impressive accuracy rate of 92%, indicating its effectiveness in correctly 
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classifying crop yield outcomes. Comparatively, by Figure 3 the LDA+RF methodology yields 
an R2 Score of 0.78, with slightly higher MAE, RMSE, and lower accuracy compared to the 
MLDA+MRF framework. Ensemble VNN-DNN and SVM methodologies also exhibit strong 
performance with R2 Scores of 0.82 and 0.79, respectively, along with competitive MAE, 
RMSE, and accuracy values. However, Naive Bayes lags behind with the lowest R2 Score of 
0.72 and relatively higher MAE, RMSE, and lower accuracy, suggesting its limited 
effectiveness in predicting crop yield compared to the other methodologies. Overall, the 
evaluation underscores the efficacy of the MLDA+MRF framework in agricultural data 
analysis, offering promising insights for optimizing crop yield prediction and decision-making 
in the agricultural sector. 

9. CONCLUSION 

The proposed Modified Linear Discriminant Analysis (MLDA) combined with Modified 
Random Forest (MRF) framework emerges as a potent tool for predicting crop yield, 
particularly with the Indian Chamber of Food and Agriculture (ICFA) dataset. The framework 
achieves an impressive accuracy rate of 92%, indicative of its robustness in estimating crop 
yield with high precision. This level of accuracy underscores the framework's efficacy in 
minimizing prediction errors and facilitating well-informed decision-making in agriculture, 
critical for maximizing productivity and ensuring food security. MLDA plays a crucial role in 
the framework by effectively reducing the dimensionality of the dataset and identifying the 
most influential features, while MRF harnesses the power of ensemble learning to construct 
predictive models based on the refined feature set. The seamless integration of MLDA and 
MRF enhances the framework's ability to capture intricate relationships within the data, leading 
to superior performance compared to conventional methodologies. This framework holds 
immense promise in revolutionizing agricultural data analysis, providing valuable insights for 
optimizing crop yield prediction, and contributing to the advancement of sustainable 
agricultural practices on a global scale. 
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