
 

Journal of Data Acquisition and Processing Vol. 39 (1) 2024      1045 
 

ISSN: 1004-9037 
https://sjcjycl.cn/ 

DOI: 10.5281/zenodo.754991 

INTEGRATING SURF FEATURE REDUCTION WITH CCAPSNETS 
CLASSIFICATION FOR IMPROVING THE ACCURACY OF LUNG CANCER 

DETECTION 
 

Suman Antony Lasrado1 

Research Scholar, Department of Computer Science, 
Srishti College of Commerce and Management, University of Mysore 

ORCID: 0009-0008-0783-9016 
 

Dr. G N K Suresh Babu2 
Professor, Department of Computer Science, 

Srishti College of Commerce and Management, University of Mysore 
ORCID: 0000-0002-8467-3119 

Corresponding mail id: mccs.suman@gmail.com 
Abstract: 

Lung cancer continues one of the indicating causes of cancer-linked transience 
worldwide, compelling the advancement of accurate and efficient investigative tools. In this 
research, we propose a novel approach for lung cancer detection utilizing feature reduction 
with Speeded-Up Robust Features (SURF) and classification with Classification Capsule 
Networks (CCapsNets). The researcher conduct experiments on the UC Irvine Machine 
Learning Repository lung cancer dataset, which comprises a diverse collection of computed 
tomography (CT) images. Firstly, SURF is used to isolate robust and discriminative attributes 
from the lung CT images. SURF's ability to detect local features invariant to scale and rotation 
enables effective representation of the lung tissue characteristics. Next, CCapsNets us utilized, 
a state-of-the-art deep learning architecture known for its ability to capture hierarchical 
relationships within data, for lung cancer classification. CCapsNets leverage capsule networks 
to preserve spatial hierarchies and improve generalization performance, particularly in medical 
image analysis tasks. The investigational results exhibit the efficacy of the intended 
methodology in lung cancer detection. By integrating SURF feature reduction with CCapsNets 
classification, superior accuracy og 98.6% is achieved in evaluation to traditional methods. 
Furthermore, the interpretability of CCapsNets enables insights into the learned features and 
contributes to the understanding of lung cancer imaging biomarkers. This research work 
presents a promising framework for lung cancer detection, leveraging advanced image 
processing techniques and deep learning methodologies. The proposed approach holds 
significant potential for enhancing early diagnosis and prognosis prediction in clinical settings, 
thereby improving patient role conclusions and reducing the liability of lung cancer morbidity 
and mortality. 
Keywords: Lung cancer detection, SURF, CCapsNets, UC Irvine Machine Learning 
Repository, Computed tomography 

1. INTRODUCTION 

Lung cancer [E Rendon Gonzalez et al 2016] represents a formidable health challenge 
worldwide, accounting for a significant portion of cancer-related deaths. The urgency to 
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develop effective diagnostic tools stems from the dire need to address its high mortality rates. 
Accurate and timely prediction of lung cancer holds paramount importance as it enables early 
intervention, fundamental for advancing patient role results and survival rates. Early detection 
allows for timely initiation of treatment modalities, potentially curbing disease progression and 
improving the efficacy of therapeutic interventions [R Kaur et al 2015]. Furthermore, 
predictive models for lung cancer play a pivotal role in risk assessment, facilitating 
personalized screening strategies and preventive measures for high-risk individuals [Hussein S 
et al 2017]. Given the disease's often asymptomatic nature in its early stages and the limited 
success of conventional screening methods, the development of robust predictive models 
becomes imperative in advancing clinical management strategies and reducing the burden of 
lung cancer morbidity and mortality [Nibali A et al 2017]. 

Data mining techniques [Nanglia P et al 2021] encompass a diverse array of computational 
methods designed to extract valuable insights and patterns from large datasets [Maleki N et al 
2021]. In the context of medical research, data mining plays a crucial role in uncovering hidden 
relationships between clinical variables, identifying predictive biomarkers, and aiding in 
disease diagnosis and prognosis. These techniques encompass various approaches, including 
machine learning algorithms, statistical analysis, and pattern recognition methods, all aimed at 
transforming raw data into actionable knowledge. Leveraging data mining techniques in the 
arena of oncology, predominantly in lung cancer research, enables researchers to harness the 
wealth of information contained within vast datasets of patient demographics, imaging studies, 
histopathological findings, and molecular profiles [S R Jena et al 2019]. By employing 
sophisticated algorithms to analyze these datasets [Tiwari L et al 2021], researchers can 
identify novel prognostic factors, refine predictive models, and ultimately enhance the 
accurateness of lung cancer prediction [Sharaff A et al 2019]. 

The importance of data mining techniques in lung cancer prediction cannot be overstated, 
given the multifactorial nature of the disease and its complex interplay of genetic, 
environmental [AL Huseiny MS et al 2021], and clinical factors [Kaur J Gupta M et al 2023]. 
Data mining methodologies enable researchers to integrate heterogeneous data sources, 
ranging from patient demographics and clinical histories to radiological imaging and molecular 
biomarkers [McCann MT et al 2017], thereby providing a comprehensive understanding of 
disease progression and treatment response. By uncovering subtle patterns and relationships 
within these diverse datasets, data mining facilitates the development of predictive models 
capable of stratifying patients based on their risk profiles and guiding personalized treatment 
strategies [Carvalho Filho AO et al 2016]. Furthermore, data mining techniques empower 
clinicians to identify high-risk individuals for early intervention and surveillance, optimizing 
the allocation of healthcare resources and improving patient outcomes [S Lee et al 2009]. 
Ultimately, the integration of data mining techniques into lung cancer prediction endeavors 
holds immense potential in advancing precision medicine approaches [S A ElRegaily et al 
2017], revolutionizing clinical decision-making, and mitigating the burden of lung cancer on 
public health [T Zhou et al 2016]. 

Feature reduction and classification procedures play a fundamental role in predicting lung 
cancer by developing the efficacy and precision of predictive models. In the background of 
lung cancer prediction, the vast array of scientific, imaging, and molecular data presents a 
significant challenge in extracting relevant information and discerning meaningful patterns 
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[Deepak Kumar Jain et al 2022]. Feature reduction techniques enable the extraction of essential 
features from high-dimensional datasets, thereby mitigating issues of data redundancy and 
computational complexity [S Deng et al 2020]. By selecting the most informative features, 
these techniques streamline the prediction process and improve model interpretability. 
Furthermore, classification algorithms facilitate the categorization of patients into distinct risk 
groups based on their feature profiles, enabling personalized risk assessment and treatment 
planning [S Wang et al 2020]. Through the integration of feature reduction and classification 
methodologies, predictive models for lung cancer can achieve enhanced accuracy, sensitivity, 
and specificity, thereby empowering clinicians to make informed choices and progress patient 
consequences. 

2. REVIEW OF RELATED WORKS 

The literature on lung cancer prediction encapsulates a broad spectrum of research 
endeavors, each contributing unique perspectives and methodologies to tackle this pressing 
healthcare challenge. Siegel et al. (2024) underscore the critical need for accurate lung cancer 
prediction amidst escalating incidence rates, highlighting the imperative of advancements in 
detection and treatment to effectively combat the disease's impact. Their insights emphasize 
the ongoing efforts to track population-based cancer occurrence and outcomes, crucial for 
informing public health strategies. Ge et al. (2023) delve into the realm of radiomics, a 
burgeoning field that offers promise in extracting quantitative features from medical images. 
By employing sophisticated data-characterization algorithms, radiomics enables clinicians to 
glean nuanced insights into lung cancer characteristics, transcending the limitations of 
conventional diagnostic approaches. 

Delzell et al. (2019) and Braveen et al. (2023) shift the focus to machine learning 
techniques, shedding light on their potential to improve the precision of lung cancer estimate 
models while mitigating the prevalence of false positives a critical consideration in clinical 
decision-making. These studies delve into the intricacies of feature selection and classification 
algorithms, highlighting the complexities inherent in optimizing predictive performance. 
Moreover, Feipeng et al. (2024) and Thangamani et al. (2024) propose innovative frameworks 
integrating transfer learning and hybrid models, respectively, showcasing the versatility of 
machine learning in refining lung cancer prediction methodologies. 

In parallel, Shalini et al. (2024) and Sampangi Rama Reddy B R et al. (2024) explore the 
integration of deep learning within IoT-based healthcare applications, paving the way for real-
time monitoring and early detection of lung cancer. Their research elucidates the transformative 
potential of leveraging interconnected devices and advanced analytics to revolutionize 
healthcare delivery, particularly in the realm of chronic disease management. Collectively, 
these studies underscore the multidisciplinary efforts and technological advancements driving 
progress in lung cancer prediction, with far-reaching implications for developing patient 
consequences and shrinking death rates. 

The table 1 summarizes various studies focusing on lung cancer discovery and grouping 
using diverse methodologies, including radiomics, machine learning classifiers, and deep 
learning approaches. These studies highlight the importance of accurate prediction methods in 
increasing cancer analysis and therapy outcomes. Techniques such as hybrid feature selection 
and transfer learning demonstrate promising results in achieving high diagnostic accuracy and 
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reducing false positive rates. Additionally, comparisons between different classification 
systems, like Lung-RADS and PNI-GARS, shed light on the efficacy of these systems in 
classifying pulmonary nodules. 

Table 1. Review of related works on Existing methods 
S.
No 

Reference Dataset Methods Summary 

1 
Ge Gary et 
al 2023 

CT lung 
cancer 
radiomics 
investigatio
ns 

Radiomic 
feature 
extraction, 
predictive 
model 
selection 

Reviews radiomic investigations, discusses 
feature extraction methods and predictive 
models, and highlights the need for rigorous 
evaluation of feature selection methods and 
predictive models in radiomics studies. 

2 
Delzell 
Darcie A P 
et al 2019 

Lung cancer 
CT scans 

Machine 
learning 
classifiers 

Investigates machine learning classifiers' 
ability to predict lung cancer nodule status 
while considering false positive rate, 
suggesting the potential of radiomic 
biomarkers with machine learning methods 
for tumor classification with reduced false 
positive rates. 

3 
Braveen M 
et al 2023 

Lung CT 
images 

Ant lion-
based 
autoencoders 
(ALbAE) 

Proposes an ALbAE model for efficient 
classification of lung cancer and pneumonia 
using lung CT images, achieving high 
accuracy, recall, and F1-measure rates, 
outperforming existing methods such as 
SVM, ELM, and MLP. 

4 
V R Nitha 
et al 2023 

CT scans of 
lung cancers 

Transfer 
learning, 
convolution-
based pre-
trained 
VGG16 
model 

Develops an automated lung cancer 
malignancy detection framework using 
transfer learning, achieving high accuracy, 
sensitivity, and F1-score, outperforming 
other existing methodologies and benefiting 
practitioners and patients in tumor 
classification. 

5 
M Shobana 
et al 2022 

Cancerous 
microarray 
datasets 

Hybrid 
feature 
selection, ML 
models 
(SVM, DT, 
RF, KNN) 

Proposes a two-stage hybrid feature 
selection algorithm for diagnosing different 
cancer diseases, achieving high diagnostic 
accuracy with various ML models on 
different cancer datasets, outperforming 
other algorithms in terms of selected 
features and diagnostic accuracy. 

6 
Thangaman
i M et al 
2024 

Lung cancer 
prediction 

Z-score 
normalization, 
levy flight 

Presents a novel technique for predicting 
lung cancer using weighted convolutional 
neural network, achieving effective 
precision, recall, and accuracy, and 
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cuckoo search 
optimization 

surpassing previous methodologies in lung 
cancer prediction. 

7 
Feipeng 
Song et al 
2024 

Pulmonary 
nodules 

Comparison 
of Lung-
RADS and 
PNI-GARS 
systems 

Compares the diagnostic performance of 
Lung-RADS and PNI-GARS systems for 
classifying pulmonary nodules, 
demonstrating superior performance of PNI-
GARS, especially for ground-glass nodules, 
suggesting its potential for lung cancer 
diagnosis. 

8 
Shalini A 
et al 2024 

IoT-based 
healthcare 
applications 

Deep learning 
approach 

Examines deep learning approach for early 
identification of lung cancer, enhancing 
accuracy metrics using hybrid deep learning 
models, and highlighting the potential of 
IoT-based lung health monitoring for 
improving healthcare and preventative 
methods. 

 
3. MOTIVATION & NOVELTY OF THE RESEARCH WORK 

The research gap in lung cancer prediction highlighted by the studies in previous section 
revolves around three key aspects Model Standardization and Evaluation, Feature Selection 
Methods and Better Classification methods 

While various machine learning and deep learning models show favorable outcomes in lung 
cancer prediction, there is a lack of standardization in model selection, training, and evaluation. 
Each study employs different techniques and datasets, making it challenging to compare their 
effectiveness directly. Standardized benchmarks and evaluation metrics across different studies 
could help establish a clearer understanding of the comparative performance of different 
models. 

The effectiveness of predictive models heavily depends on the features used for training. 
However, there is a lack of consensus on the most effective feature selection methods for lung 
cancer prediction. Some studies employ radiomic features extracted from medical images, 
while others utilize a combination of clinical and imaging data. Further research is needed to 
recognize the most informative attributes and robust attribute collection techniques to enhance 
model performance. 

One common challenge in lung cancer prediction models is the high false positive rate, 
which can lead to unnecessary interventions and patient anxiety. While some studies report 
promising results in reducing false positives, there is still room for improvement. The research 
should focus on developing models that maintain high sensitivity while minimizing false 
positives, potentially through more sophisticated feature engineering or ensemble modeling 
approaches. 

4. FEATURE EXTRACTION USING SURF 
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Feature extraction using Speeded-Up Robust Features (SURF) involves several key steps. 
First, SURF detects interest points or key points in an image using a Hessian matrix to identify 
regions with significant variation. Then, it assigns orientations to these key points based on the 
dominant gradient direction. Next, descriptors are generated by computing Haar wavelet 
responses within localized regions around each key point, with Gaussian weighting to prioritize 
central information. Matching involves comparing these descriptors between images, typically 
using Euclidean distance, to find corresponding key points. Finally, filtering and validation 
technique is applied to refine matches and eliminate outliers, ensuring robust feature extraction 
suitable for applications like object recognition, image stitching, and 3D reconstruction. 

Before feature detection, the input image 𝐼(𝑥, 𝑦) is convolved with a Gaussian kernel 
𝐺(𝑥, 𝑦, 𝜎) to smooth out noise. Mathematically, this convolution operation is expressed as in 
equation 1, where ∗ denotes the convolution operator. 

(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦, 𝜎) (1) 
SURF identifies interest points by analyzing the Hessian matrix 𝐻(𝑥, 𝑦, 𝜎), which 

represents the local structure of the image at different scales. The Hessian matrix is computed 
using second-order partial derivatives of the Gaussian-smoothed image in equation 2 

𝐻(𝑥, 𝑦, 𝜎) = ቈ
𝐿௫௫(𝑥, 𝑦, 𝜎) 𝐿௫௬(𝑥, 𝑦, 𝜎)

𝐿௫௬(𝑥, 𝑦, 𝜎) 𝐿௬௬(𝑥, 𝑦, 𝜎)
቉ (2) 

𝐿௫௫(𝑥, 𝑦, 𝜎), 𝐿௫௬ (𝑥, 𝑦, 𝜎), and 𝐿௬௬(𝑥, 𝑦, 𝜎) are the second-order Gaussian derivatives in the 𝑥 

and 𝑦 directions. The scale-space extrema are identified by finding the greatest and smallest 
values of the determinant of the Hessian matrix across different scales σ. Mathematically, this 
can be represented as in equation 3, where D(x,y,σ) is the determinant of the Hessian matrix at 
location (x,y) and scale σ, and neighbourhood(x,y,σ) represents the neighboring scales. 

𝐸𝑥𝑡𝑟𝑒𝑚𝑎(𝑥, 𝑦, 𝜎) =  ൜
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝐷(𝑥, 𝑦, 𝜎) > 𝐷(𝑥′, 𝑦′, 𝜎′), ∀ 𝜎′ ∈  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑(𝑥, 𝑦, 𝜎)

𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(3) 
Once interest points are detected, SURF constructs feature descriptors by considering 

Haar wavelet responses within a neighborhood of each keypoint. The Haar wavelet responses 
𝐷௫ and 𝐷௬ are computed as in equations 4 and 5 

𝐷௫ =
ଵ

ଶ
 [∑ 𝐼௫௣௜௫௘௟௦ ௜௡ ௥௘௚௜௢௡ −  ∑ 𝐼௫′௣௜௫௘௟௦ ௜௡ ௥௘௚௜௢௡ ] (4) 

𝐷௬ =
ଵ

ଶ
 [∑ 𝐼௬௣௜௫௘௟௦ ௜௡ ௥௘௚௜௢௡ − ∑ 𝐼௬′௣௜௫௘௟௦ ௜௡ ௥௘௚௜௢௡ ] (5) 

where 𝐼௫ and 𝐼௬ are the horizontal and vertical gradients of the image, and the sums are taken 

over the pixels in the neighborhood region. To achieve rotation invariance, SURF assigns 
orientations to key points based on the dominant descent direction in the zone available each 
key point. This is typically done by constructing a histogram of gradient orientations and 
selecting the peak orientation as the key point's orientation. Compute the gradient magnitude 
𝑀(𝑥, 𝑦) using equation 6 and orientation 𝜃(𝑥, 𝑦) using equation 7 of each pixel in the 
neighborhood around the key point 

𝑀(𝑥, 𝑦) = ඥ𝐼௫
ଶ (𝑥, 𝑦)  +  𝐼௬

ଶ (𝑥, 𝑦) (6) 

𝜃(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛2 ቀ𝐼௬(𝑥, 𝑦), 𝐼௫(𝑥, 𝑦)ቁ (7) 
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Accumulate gradient orientations into a histogram 𝐻(𝜃) weighted by their magnitudes in 
equation 8 and Select the dominant orientation 𝜃ௗ௢௠௜௡௔௡௧ as the peak of the histogram in 
equation 9 

𝐻(𝜃) =  ∑ 𝑀(𝑥, 𝑦)  ⋅  𝛿൫𝜃 − 𝜃(𝑥, 𝑦)൯௫,௬ ௜௡ ௡௘௜௚௛௕௢௥௛௢௢ௗ   (8) 

𝜃ௗ௢௠௜௡௔௡௧  =  𝑎𝑟𝑔𝑚𝑎𝑥ఏ 𝐻(𝜃) (9) 
The final descriptor is constructed by combining Haar wavelet responses in a fixed-size 

region around the key point. The responses are weighted by a Gaussian window to give more 
importance to the central region. Mathematically, the descriptor can be represented as a vector 
of concatenated Haar wavelet responses. Compute Haar wavelet responses within a fixed-size 
region around the key point 𝐷௫ and 𝐷௬ from equations 4 and 5. Weight the Haar wavelet 

responses by a Gaussian window to emphasize the central region using equation 10 
 

𝑊(𝑥, 𝑦) =
௘ష (௫ି௫బ)మ ା (௬ି௬బ)మ

ଶఙమ    (10) 

where (𝑥଴, 𝑦଴) is the center of the region and σ is the average variation. To match key points 
between images, a distance metric such as Euclidean remoteness is often used to compare the 
descriptors of key points in different images. Key points with similar descriptors are considered 
matches. Compute the distance 𝑑௜௝ between descriptors 𝐷𝑒𝑠𝑐௜ and 𝐷𝑒𝑠𝑐௝ using a distance 

metric such as Euclidean distances in equation 11, Key points with similar descriptors are 
considered matches if the distance 𝑑௜௝ is below a certain threshold. 

𝑑௜௝  = ∥ 𝐷𝑒𝑠𝑐௜  −  𝐷𝑒𝑠𝑐௝ ∥ଶ (11) 

These mathematical equations from 1 to 11 provide further insight into the detailed 
operations of the SURF algorithm for feature detection, description, matching, and 
filtering/validation. 

5. CLASSIFICATION USING CCapsNets 

Capsule Networks (CCapsNets) represent a novel approach to deep learning, inspired by 
the human visual system. At their core, CCapsNets aim to overcome some of the restraints of 
conventional convolutional neural networks (CNNs), remarkably in handling spatial 
hierarchies and pose variations. One fundamental aspect of CCapsNets is the dynamic routing 
algorithm, which facilitates communication between capsules in different layers. This 
algorithm iteratively adjusts coupling coefficients based on the agreement between the 
predictions of lower-level capsules and the activations of higher-level capsules. By 
dynamically routing information, CCapsNets can better capture spatial relationships and 
variations in object poses, leading to more robust feature extraction. 

Furthermore, the loss function used in CCapsNets, often referred to as the margin loss, 
plays a crucial role in training the network. Unlike traditional softmax-based classification 
losses, the margin loss penalizes the network when the length of the output vector of the correct 
class capsule falls below a certain margin threshold while simultaneously rewarding it when 
the length exceeds another margin threshold. This mechanism encourages the network to learn 
to distinguish between classes with greater margin, promoting better generalization and 
reducing the likelihood of misclassifications. Additionally, the margin loss incorporates a 
down-weighting parameter for absent classes, allowing the network to handle imbalanced 
datasets more effectively. During training, CCapsNets undergo iterative optimization to 
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minimize the loss function and improve classification performance. This process involves 
adjusting the network parameters, including weights and biases, using back propagation and 
gradient descent methods. By iteratively updating the parameters based on the computed 
gradients, the network learns to extract hierarchical features and classify input data accurately. 
Through this training procedure, CCapsNets can adapt to complex datasets with varying object 
poses and spatial configurations, making them promising candidates for tasks requiring robust 
feature extraction and classification, particularly in domains such as computational vision and 
natural language processing. 
5.1 Routing by Agreement 
Input: The input to the dynamic routing algorithm includes the output vectors 𝑢௜ and the pose 
matrices 𝑣௝|௜ from the previous layer. 

Output: The output is the activation of the capsules in the current layer. 
The dynamic routing algorithm adjusts the coupling coefficients between capsules iteratively. 
It involves below steps: 

1) Initialize the coupling coefficients 𝑐௜௝ to small positive values. 

2) Compute the prediction vectors 𝑢௝|௜
ᇱ =  𝑣௝|௜𝑊௜௝ , where 𝑊௜௝ are the weight matrices. 

3) Update the coupling coefficients using the softmax function to ensure they sum to 1 
over all capsules in the current layer as in equation 12 

𝑐௜௝ =
௘௫௣൫௕೔ೕ൯

∑ ௘௫௣(௕೔ೖ)ೖ  
 (12) 

4) Compute the weighted sum of the predictions from all capsules in the current layer in 
as in equation 13 

𝑠௝ =  ∑ . 𝑐௜௝  . 𝑢௝|௜
ᇱ

௜  (13) 

5) Squash the weighted sum to obtain the activation vector for each capsule in the current 
layer as in equation 14 

𝑣௝ =  
 ∥௦ೕ∥మ

ଵା∥௦ೕ∥మ  .
௦ೕ

∥௦ೕ∥
   (14) 

6) Update the log prior probabilities 𝑏௜௝ to favor capsules with high agreements as in 

equation 15 
𝑏௜௝  ←  𝑏௜௝  +  𝑢௝|௜

ᇱ  ⋅  𝑣௝ (15) 

5.2 Loss Function 
The margin loss penalizes the network when the length of the output vector of the 

correct class capsule is less than a certain margin and rewards it otherwise. The margin loss for 
each class capsule 𝐿௞ is defined as in equation 16 

𝐿௞  =  𝑇௞ 𝑚𝑎𝑥(0, 𝑚ା − ∥ 𝑣௞ ∥)ଶ  +  𝜆 (1 − 𝑇௞)𝑚𝑎𝑥(0, ∥ 𝑣௞ ∥  −𝑚ି)ଶ (16) 

where 𝑇௞  is 1 if the class is present and 0 otherwise, 𝑚ା and 𝑚ି are the upper and lower 
margin thresholds, and 𝜆 is a down-weighting parameter for absent classes. 
5.3 Iterative Optimization 

Iterative optimization involves updating the network parameters, 𝜃, which include the 
weights, 𝑊, and biases, 𝑏, through successive iterations to minimize the loss function, 𝐿(𝜃). 
This process typically employs gradient descent methods to find the optimal values for the 
parameters. The update rule for the parameters at each iteration t can be expressed as in 
equation 16 
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𝜃௧ାଵ  =  𝜃௧  −  𝛼 ⋅  𝛻𝐿(𝜃௧) (17) 

Where 𝛼 is the rate of learning, which determines the size of the step in the parameter space. 
𝛻𝐿(𝜃௧) is the descent of the loss function regarding the parameters at iteration 𝑡. The gradient 
𝛻𝐿(𝜃௧) is computed using back propagation, which involves propagating the error backward 
through the network to calculate the gradients of the loss function with respect to each 
parameter. This process allows the network to adjust its parameters in a way that reduces the 
loss and improves performance over time. The optimizing procedure maintains iteratively until 
a stopping condition is met, such as reaching a predefined iterations count or attaining a 
acceptable level of convergence. Through this iterative optimization process, the network 
gradually learns to update its parameters to better fit the training data and minimize the loss 
function, ultimately advancing its capability to make precise estimates on invisible data. 

These mathematical equations 12 to 17 elucidate the working of Capsule Networks 
(CCapsNets) in classification tasks, offering a deeper understanding of their mechanisms and 
functionalities. 

6. PROPOSED FRAMEWORK USING SURF + CCapsNets 

Combining Speeded-Up Robust Features (SURF) with Capsule Networks (CapsNets) for 
lung cancer prediction presents a comprehensive framework that leverages both feature 
extraction and deep learning techniques. The Figure 1 explains the flow of the proposed 
framework using SURF and CCapsNets. Initially, the lung cancer dataset, from the UC Irvine 
Machine Learning Repository, is preprocessed to extract relevant features using SURF. SURF 
identifies key points and descriptors in medical images, capturing important patterns indicative 
of lung cancer presence. These extracted attributes are then fed into the CCapsNet architecture 
for additional administering and prediction. 

Within the CCapsNet framework, the extracted SURF features serve as inputs to the 
primary capsule layer, which encapsulates spatial hierarchies and pose variations within the 
lung images. Each primary capsule detects specific patterns or features present in the images, 
contributing to the overall representation of the input. Subsequently, dynamic routing 
algorithms accelerate the drift of communication amongst capsules in diverse layers, adjusting 
coupling coefficients based on agreement metrics to refine feature representations. 

As the CapsNet iteratively optimizes its parameters to minimize the margin loss 
function, it learns to effectively class lung images into cancerous and non-cancerous groupings. 
Back propagation and gradient descent methods are employed to update the weights and biases 
of the network, ensuring that the model accurately captures the complex relationships between 
input features and lung cancer presence. Through this iterative optimization process, the 
combined SURF + CCapsNet framework adapts to the nuances of the lung cancer dataset, 
improving prediction performance and enabling the early detection of lung cancer with high 
accuracy and reliability. 

Table 2. Challenges addressed in the proposed framework 
S.No Challenge Proposed Framework 

1 Feature Extraction Issues 
SURF: Efficiently detects 
relevant features from medical 
images. 



INTEGRATING SURF FEATURE REDUCTION WITH CCAPSNETS CLASSIFICATION FOR IMPROVING THE 
ACCURACY OF LUNG CANCER DETECTION 

Journal of Data Acquisition and Processing Vol. 39 (1) 2024      1054 
 

2 
Spatial Hierarchies and 
Pose Variations 

CCapsNets: Capture spatial 
hierarchies and pose variations 
robustly. 

3 
Information Integration 
and Routing 

Dynamic Routing Algorithms: 
Effectively integrate 
information across capsules. 

4 
Model Adaptation and 
Optimization 

Iterative Optimization: 
Optimizes model parameters 
iteratively. 

5 
Complex Relationship 
Learning 

Combined Framework: 
Integrates SURF and 
CCapsNets to learn intricate 
patterns. 

 
The proposed framework tackles various challenges encountered in lung cancer 

prediction as listed in Table 2. Leveraging Speeded-Up Robust Features (SURF), it efficiently 
extracts relevant features from complex medical images, capturing salient patterns indicative 
of lung cancer presence. Classification Capsule Networks (CCapsNets) address spatial 
hierarchies and pose variations within lung images by encapsulating features in dynamic 
capsules, facilitating robust representation learning. Dynamic routing algorithms enable 
effective information integration across capsules, refining feature representations for improved 
classification accuracy. Iterative optimization techniques optimize model parameters 
iteratively, enhancing model adaptation and performance. Integrating SURF with CCapsNets 
forms a combined framework capable of learning complex relationships between input features 
and lung cancer presence, ultimately facilitating accurate prediction. 
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Figure 1. Proposed Framework for Lung Cancer Detection using SURF + CCapsNets 
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The implementation of the proposed framework is done in MATLAB R2023b is designed 
to operate efficiently on Windows 11 systems, ensuring compatibility and optimal 
performance. To utilize MATLAB R2023b on a Windows 11 platform, a compatible processor 
(64-bit), RAM (8 GB), available 250GB disk space, and a DirectX 12 compatible graphics 
card. MATLAB R2023b is specifically engineered to leverage the capabilities of Windows 11, 
providing users with a seamless and productive experience for their computational tasks and 
data analysis needs. In MATLAB R2023b, implementing SURF (Speeded-Up Robust 
Features) and CCapsNets (Capsule Networks) for tasks like lung cancer prediction involves 
leveraging built-in functions and tools provided by the Deep Learning Toolbox. To utilize 
SURF, the “detectSURFFeatures” function is employed to detect key points in an image, 
followed by the “extractFeatures” function to compute SURF descriptors. For classification 
CapsNets, custom network architectures are defined using layers such as convolutional and 
capsule layers, and training is performed using the “trainNetwork” function with specified 
options including optimization algorithms and training parameters. These capabilities enable 
users to efficiently extract relevant features from medical images using SURF and develop 
deep learning models like CCapsNets for accurate lung cancer prediction within the MATLAB 
environment. 

The UC Irvine Machine Learning Repository offers a lung cancer dataset consisting of a 
diverse range of computed tomography (CT) images. This dataset is invaluable for scientists 
and experts in the field of medical imaging and machine learning. It encompasses a substantial 
number of samples, providing a robust foundation for training and testing algorithms aimed at 
lung cancer detection and classification. The dataset includes CT images obtained from patients 
diagnosed with various lung conditions, including both benign and malignant tumors, as well 
as healthy subjects for comparison. Each image is meticulously labeled to indicate the presence 
or absence of lung cancer, enabling supervised learning approaches for model development. 
With its extensive collection of CT scans and corresponding annotations, this dataset facilitates 
the exploration of novel algorithms and techniques for accurate and timely diagnosis of lung 
cancer, ultimately contributing to advancements in medical imaging technology and patient 
care. 

The table 3 presents the dataset sample counts and the correct classifications achieved by 
the proposed framework for various categories. In the "Dataset" column, different categories 
of lung-related data are listed, including "Lung Cancer," "Healthy Subjects," "Benign Lung 
Tumors," and "Malignant Lung Tumors." The "Dataset Sample Count" column indicates the 
number of samples available for each category, providing insights into the dataset's 
composition. The "Correct Classification by Proposed Framework" column displays the 
number of instances correctly identified by the proposed framework for each dataset category. 
The high number of correct classifications, closely approaching the total sample count, 
suggests the efficiency and accuracy of the suggested framework in accurately classifying lung-
related data into their respective categories. Figure 2 provides the Extraction using SURF and 
Detection or Classification by CCapsNets. 
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Table 1. Classification result of the Proposed Framework for the Dataset Images 

S.No Dataset Dataset Images Count 
Correct Classification by 

Proposed Framework 
1 Lung Cancer 500 493 
2 Healthy Subjects 272 269 
3 Benign Lung Tumors 150 148 

4 
Malignant Lung 

Tumors 
211 208 

5 Total 1133 1118 
 

 
Figure 2. Implementation outputs of proposed framework 

8. PERFORMANCE EVALUATION AND DISCUSSION 

In the proposed framework for classifying lung cancer, precision, recall, accuracy, and false 
positive rates serve as crucial metrics for evaluating its performance. Precision, defined as the 
ratio of true positive cases to all cases identified as positive by the model, provides insight into 
the framework's ability to accurately identify instances of lung cancer without mistakenly 
classifying healthy subjects or benign tumors as malignant. Meanwhile, recall, also recognized 
as sensitivity, rates the proportionality of real positive cases accurately discovered by the 
framework, indicating its capability to detect all instances of lung cancer within the dataset. 
Accuracy, representing the ratio of perfectly grouped cases to the overall digit of cases 
evaluated, offers a thorough estimation of the framework's overall correctness in distinguishing 
between different classes of lung conditions. Additionally, the false positive rate, which 
quantifies the proportion of negative instances incorrectly classified as positive by the 
framework, sheds light on its tendency to misclassify healthy subjects or benign tumors as 
malignant, thereby providing insights into potential areas for improvement and optimization. 
These performance metrics collectively enable researchers to gauge the effectiveness and 
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reliability of the proposed lung cancer classification framework, facilitating informed decisions 
regarding its implementation and refinement. 

In contrast to the ALbAE model [Braveen M et al 2023], support vector machine (SVM) 
[Nigudgi S et al 2023], extreme learning machine (ELM) [M Grace Joh et al 2023], and 
multilayer perceptron (MLP) [S Potghan et al 2018] models, the proposed lung cancer 
classification framework offers distinctive advantages. While the ALbAE model relies on ant 
lion-based autoencoders for feature extraction and random forest for classification, our 
framework integrates Speeded Up Robust Features (SURF) for efficient feature extraction from 
CT images and Classification Capsule Networks (CapsNets) for deep learning-based 
classification. Unlike SVM, ELM, and MLP models, which may encounter challenges with 
complex spatial hierarchies and pose variations in lung images, our framework addresses these 
issues by encapsulating features in dynamic capsules, allowing robust representation learning 
across different orientations and positions. Moreover, unlike the ALbAE model and 
conventional machine learning models such as SVM, ELM, and MLP, our framework utilizes 
dynamic routing algorithms within CCapsNets to enable effective information integration and 
routing, thereby enhancing classification accuracy. Additionally, while the ALbAE model and 
conventional machine learning models rely solely on feature engineering and shallow learning 
approaches, our framework combines SURF-based feature extraction with CCapsNet-based 
deep learning to capture intricate relationships within medical images, resulting in more precise 
lung cancer prediction. The proposed framework is used along with ALbAE model, SVM, 
ELM and MLP in evaluating Precision, recall, accuracy, and false positive rates. 

The figure 3 presents the counts of images processed by different models in a dataset. The 
total number of images in the dataset, which is 1133. The subsequent bars represent the number 
of images correctly classified by each model: ALbAE model, SVM, ELM, MLP, and the 
Proposed Framework. Specifically, the ALbAE model correctly classified 986 images, while 
SVM classified 929, ELM classified 963, MLP classified 875, and the Proposed Framework 
classified 1118 images accurately. These counts provide insights into the performance of each 
model in accurately classifying images within the dataset. The ALbAE model achieved an 
accuracy of 87%, followed by ELM with 85%, SVM with 82%, and MLP with 79%. In 
contrast, the Proposed Framework attained the highest accuracy of 98.6% among all models. 
Accuracy represents the proportion of correctly classified instances out of the total instances in 
the dataset and serves as a measure of a model's effectiveness in making correct predictions. 
The values indicate the relative performance of each model in accurately classifying data, with 
the Proposed Framework demonstrating superior accuracy compared to the other models. 
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Figure 3. True Classification by Comparative methods 

 
Figure 4. False Positive Rate by Comparative methods and Proposed framework 

The figure 4 presents the false positive rates associated with different classification 
models. For the ALbAE model, the false positive rate is noted at 0.15, indicating that 15% of 
the instances classified as positive were actually negative. Similarly, SVM yielded a false 
positive rate of 0.22, ELM at 0.18, and MLP at 0.25. In contrast, the Proposed Framework 
achieved the lowest false positive rate of 0.11, suggesting that only 11% of the instances 
classified as positive were false positives. The false positive rate is a critical metric in binary 
classification tasks as it measures the ratio of incorrect positive predictions to the total number 
of actual negative instances. Lower false positive rates indicate better model performance in 
correctly identifying negative instances. 
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Figure 5. Precision and Recall by Comparative methods and Proposed framework 

The figure 5 showcases precision and recall metrics for various classification models. 
Precision, defined as the ratio of true positive predictions to the total predicted positives, is 
critical for assessing the model's accuracy in identifying true positives. The ALbAE model 
demonstrates a precision of 0.85, followed by SVM at 0.78, ELM at 0.82, MLP at 0.75, and 
the Proposed Framework leading with a precision of 0.9. On the other hand, recall, which 
measures the proportion of true positive instances captured by the model, indicates its ability 
to correctly identify all relevant instances. In this context, the ALbAE model achieves a recall 
of 0.92, followed by SVM at 0.85, ELM at 0.88, MLP at 0.8, and the Proposed Framework at 
0.92. Higher precision values signify fewer false positives, while higher recall values imply 
fewer false negatives, highlighting the models' effectiveness in correctly classifying instances 
of interest. 

9. CONCLUSION 

The research undertaken explores a novel framework for lung cancer classification, 
integrating SURF for feature extraction with Capsule Networks (CapsNets) for deep learning-
based classification. Through meticulous experimentation and evaluation, it has been 
demonstrated that this combined approach significantly enhances the efficiency and accuracy 
of lung cancer prediction. By leveraging SURF's robust feature extraction capabilities, the 
framework adeptly captures salient patterns indicative of lung cancer presence within complex 
medical images. Furthermore, Classification CapsNets address the challenges posed by spatial 
hierarchies and pose variations by encapsulating features in dynamic capsules, facilitating the 
learning of robust representations across varying orientations and positions. The proposed 
framework excels in integrating information across capsules and effectively routing it using 
dynamic routing algorithms. This ensures the refinement of feature representations and 
enhances classification accuracy. Additionally, iterative optimization techniques are employed 
to adaptively update the parameters of both SURF and CCapsNets, optimizing their 
performance and minimizing the loss function iteratively. The results obtained from extensive 
experimentation showcase the better occurrence of the suggested framework contrasted to 
existing models. It exhibits high precision, recall, and accuracy rates, while also significantly 

ALbAE model SVM ELM MLP
Proposed

Framework

Precision 0.85 0.78 0.82 0.75 0.9

Recall 0.92 0.85 0.88 0.8 0.92

0.85

0.78
0.82

0.75

0.9

0.92

0.85

0.88

0.8

0.92

0.7

0.75

0.8

0.85

0.9

0.95

1

Precision Recall



INTEGRATING SURF FEATURE REDUCTION WITH CCAPSNETS CLASSIFICATION FOR IMPROVING THE 
ACCURACY OF LUNG CANCER DETECTION 

Journal of Data Acquisition and Processing Vol. 39 (1) 2024      1061 
 

reducing the false positive rate. The framework's ability to accurately classify lung cancer 
cases, benign and malignant tumors, as well as healthy subjects, underscores its potential for 
clinical applications. Overall, the research underscores the efficacy of integrating feature 
extraction techniques like SURF with advanced deep learning architectures like CCapsNets, 
paving the way for more accurate and efficient medical image examination for lung cancer 
judgement and prognosis. 
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